Jump to:

Lorillard

L.S. #116 Pectins Tobacco

Date: 09 May 1975
Length: 200 pages
00727364-00727563
Jump To Images
spider_lor 00727364_7563

Fields

Author
Skladanowski, M.A.
Type
SCRT, SCIENTIFIC REPORT
ABST, ABSTRACT
Area
LIBRARY/LITERATURE SEARCHES
Site
G33
Request
R1-037
Copied
Skladanowski, M.A.
Date Loaded
06 Dec 2001
Master ID
00727364/7563

Related Documents:
Litigation
Feda/Produced
Characteristic
MARG, MARGINALIA
MINI, MINIMUM CODING
UCSF Legacy ID
fiw68c00

Document Images

Text Control

Highlight Text:

OCR Text Alignment:

Image Control

Image Rotation:

Image Size:

Page 1: fiw68c00
May 9, 1975 LIJTERATURE', SEARCH NO. 116 This search covers: Tobacco Abstracts: Vol. 1 (1957) through Vol.. 19 #3 (1975) Chemical Abstracts: Vol.. 21 (1927) through Vol. 8'2',#17 (1975) Search.terms used: Pectins filling value cross-linking stiffening agent coating agent
Page 2: fiw68c00
~~ ~~ ADivasionof Loew'S Theatres,. Inc. f3osearch. Center l.ihr.;ry' 420Engli:h St., Greensboro;.N', C:27405 Cablo.Address' Larillhrd:" NE\Y'YORY.OFFICE'. 700 E. <2NU ST. May 9, 1975 LITERATURE SEARCH NO!. 116 Requested by M.A. Skladanowski PECTIN
Page 3: fiw68c00
T-naLS 11 Stability Constant S of Calcium Pectinate ' Origin of pectin Degree of - esterification 2 apple I 3 4 1 5 4 7 snnflower sugar best citrus I wild apple apple II citru II p=0•15 0•10 log 1C 0•05 0•02 0.01 5-6 2-89 f 0-03 3-04 ~ 0-04 3-27 f 0•.05 3-81 f 0-06 4-19 f 0-05 26-3 2-41 f 0-02 2-61 f 0•05 2+79 f 0-02 3d0 f 0-01 3•39 ± 0-01 29•3 2•12 f U-03 2-40 f 0-02 2-75 f 0•03 3-24 f 0•03 3•43 f 0-03 58•0 1•69 # 0-03 1-73 f 0•A3 2-09 f 0.01 2-36 f 0-02 77•3- . 1-36 f 0•02 2•20 + 0•02 2,46 ± 0;00 89•8 1•45 f 0•02 1•89 f 0-04 2-26 f 0-01 95-3 1-75 f 0-06 2-17 f 002 26-3 2-64 f 0=02 2-87 f 0-03 3•29 f 0-01 3-58 f 0-02 27-1 2•58 f 0-02 2-85 f 0-03 3-37. f 0-02 3a5 f 0 02 29•8 2-52 f 0-02 2-85 f 0•01 3-25 f 0-02 3-48 f 0-01 38•6 2-20 f 0-01 2-45 f 0-01 2-82 f 0-02 3-15 f 0-03 49-7 1•97 f 0-02 2r16f0•01 2-92 f 0-01 66•0 1-83 f 006 2-10 f 0-01 2-41 f 0-03 2-69 + 0-03
Page 4: fiw68c00
~ 56727v Prepared citrus fruiC. halves. Rrvju, Don S.. U.S... 3,707,383 (Cl. 99-100.;A 231pL), 20' Dcc~1U72,.App1. 1@9, 0E_Jian 1970; 3'.Pp: Citrus fruit halves are prepd. byy cutting a citrus0uit in 1 halves tratrsverse.to the core too provide 2' faces., ~ ThcfntitiscuttoaAcpthof011^Cr0.5in.adjaceuCthejunctiou'of, the albedo and segments andlu a.depthn of 0.5 in. at the junction ~ of'the core and se3luculs toNle allledo, An aq. gel suspension.of .-. I allydrophiliccolloiil ([ow me0mcypectiu nr..locust bean guur ona. : mift. oflhe'l) is.applied over the cuu facc.including the albedn . - . of sufLcient'.thicwuesst'aretain natural juices against evapn. and d spillage., The gel.suspension.is then allow'edd toset. Tlws;, a gell mix was prepd. to contain low methoxypeclin S0and locusCbeaat gum 20%; these malednla were mixed audd dist+ersedd in grape-' ( fnut juice according to tlleiollotvina: formulation: gol mix'.abovex i. 1.5. grapch:uit.juice 9F3.15, Ca cyilamate.0.15,, and oil essence. ~ emtdsion.0.17"jo. Thegel was dispersed in thee grapefruit juice. !aU.room lemp. in a jacketed vessel and then lleated'd to 180°F. ' .TheCacycl'amatcwasJie:rtedwitbasmallarnt.ofRrapefruit..juicet r just below the b.p. and add@d slowly too thelmt mix inithc kellle7 - tho.temp:e imthe.l=ettle ttassedueed to 170°F and: the' grapefruit " oill essrnce eurulsion was added.. The miiwasx transfcrred to a. ~jaeketediSimplex Model A filter and the temp. was kept.at 170"L. .•The hot.gel mtix: was,sprcad over the entire cut surface of the !' grapefruit and the corecavity was filled. The'.grapefrttit, after ~' alhippingby truck„ rctained its color„ Laste,, and juice and was . as attractive as fresh cut fruit at the end of'tLisperiod. ' . , -S.3'. Marino~, 905gox Determination ofYhegcl-forming.capacity of pectin. . '' 1 o»n.y (;. \' Sucunvski, Llf. (l'.xv \;wclmn-lti>lerl..ln<t. m LLer, Prnnt „ UStilt) ALI •Gnprk. . ltinuditer. ! ra,ri. 1973, '... -177 (ti),_th-I (Itaus).. Gel'-furming' cupacity and nther properties ' ' of' apple, ei4rns, and sugar' Ixctpcet'ins wore compared. \u. . currclaliint u'as fiutndl in gel rigidity tested; on app.. of wariour - • t811es. '1-headdu_.of <40 mg CaCI, for l0ft nflx•ctin gel was: adequutee for proper testing: of gel rigiifity with the. Sosnovski. ?Pp'• . ' ,. . \lfitdtt \4iauimtski . . CARTWRIGHT,. W'.. F. . .'-'$olaccoreplaeement material., U. S., Pat. Spec. No. _~3y8L2,.864, to CelaneseCorporation... U. S. Pat. Off... ©ff., Gaa. 922(4):11I0, Nay'2S, 19'74., 'Asmoking material is disclosed which condistss essent- 'fally ofa.vinyl methyl.eth:er.l maleic anhydrideco- 'polymerorsalts thereof, an inorganic particulate filler and optionally asecond.combustible material. ,. The second,combustible filler may be of tobacco dust, ` sodium-g.luconatq, pectins, natural gums'.,, or cellulose or its derivatives. The inorganic particulate material serves in the capacity of a combustion modifier and redklces'thes total effective combustible material in a_ ' particular charge. 200L
Page 5: fiw68c00
' ABSTRAC.CS . HD[dD, J. D: ; SELIGMAN, Ft. B. . . Mcthod.of preparing a.reconstituted tobacco sheet. T'3.: S. Pat. Spec. No. 3„435„829 to Philip Morris Incorporated. Off. Gaz. U. S. Pat. Off. 861(t);1'.10, Apr. 1, 1969. This disclosure relates to a:process for producing, a binder composition for usa in the manufacture of reconstitutedtobac- co. The binder is made from tobacco plant' parts and involves ,~ the use of'the naturally occurring tobacco pectins, which ar ve obtained by a process in which~an fnorganic acid is employed ..totroeat.the.tobacco.plant parts. The treatment.invoives the- destruction of the alkaline earth metal cross-Ltlilcs of the tobacco pectins, the release of the resulting tobacco peetills by a washing action and the depositing of the released tobacco pectins on.t'he treated pPantparts. (Abstract), 1402 - Gel'etasticity. VIII.. Pectin gel. Wishio }Iira'-(t9kay- 'ama Univ.)'.., J: Chem. Sbc. Japan, Pure Chem, . Scct... 74„441-3(1983); cf. C.A.47,118&`ia.-At B5° the elasticity of pectin gel's is proportionall to the 3.75th andto 1.75th ' power ofconenf below and above 1'.Oaf.. The elasticity d'c- 'creaseswithrise of temp. Marked clmngein elasticity is observed near 20°. IX. Sugar gels of gelatht andd a~ 1 45733q Aggrega$on in-pectin-glyperol-water systemsL Hor- 1 r,,.Dl F.; Stainsby, G. (Proctor Dep. Food Leather Sci., mv. eeds,. LeedS, Bngi.): Food Sii, Tachxol:, Proc. dio1. Cor.gn„ Is6 1962 ' (Pub. 1069)L 179-83 (Eng), Edited by Leitch, JamesMuil.. tlordon and Bteach. Sci..Pubt. h New Ycrk, N.Y.. The ~ work described shows the effect.of H'bondt breakers upon. pectin im glyccrol-water. soln. After consideringanalogous.rvork in the ~ field of' protein chemistry, threee materiatsu•ere used asbeti,g ; typical'examplesof~ a non-ionic H bond: breaker. (urca at pH 2.3),am ionicHbondbreaker(I(SCR)and'aninertsait(KCI). The . ~ effect of these 3 compdk, on the.aggregation of pectim in glycerol- water. solns.,wasstudied viscometrically at20°,. after heating at. 95°.for5 min: Urca preventcd.aggregation above.a.concne of, ~ 0'.3lmofar. KSCV and KCl hoth accentuated therate:of aggrega• 'tion at concns. up to about0.8 N1'but..prcvented it above 1.5 M. , The results for both urea and KCI were what was expected from : their L-nownrcactivity'towardsH.bonc4d systems. KSCX was attontalous in so far as it.had'ia greater effect in increasing aggregan tion than KCL . ._, .. .liCTT..~
Page 6: fiw68c00
,20 A'BSTpACrs ~ . . -PYRHti, C.;.MQLDI:NIfAUER, W. Untersuchungen tlber Tabaltpektine.und deren Eiad'Iussauf die Tabakqualitat. (Studies on tobaccopectineso and their influence.e on tobaccoquality. ) Dresden Inst. Tabfomsch. Ber. 10(2)e238-63,. 1y63'.. tables. (German) SB273 A2D4The. studiesincludeds determination ofthef total galacturoneacid content and its soluble and insoluble components - each calcu- :; lated. as galacturone acid anhydrid - as well as the esterlilte bound metholyl groulas. According tathe correlations of these. ~substances the degree of esterification was determined. ~At . Jbestonly little more thanhalPthe.pectinespresent.intobaeco -; couldd beisolated,.' which }veresubsequently testedifortheir .. degree of esterificat~ion as well as their average molecular size. It could be established that tobacco pectines contaiu acetyl , groups.. From the several results it revealed, that.the qualita- : tive. and quantitative pectinemodificationse in the'leaves of the,growtng,plant depend essentiallyy on the biological state off thei leaves within each priming stage and 1'esson the tobacco type. On the basis of our investigationsof'.tobaccos.cured and fer- menhated'.in different.ways, a relation between pectine modi3i- n catSon and treatmentt intensity wass recognizable. The. more . .i©tensive.the.treatment,e the more rapid was the chaindegrada- tfon of the pectines, so that the lowest't average molecularwei(;hts.were~found with, air cured and bulk fermentated tobaccos. A eorreiation.betweenn tobacco quality and pectine. level could'" noG. be recognized, though imsomem cases there was areversea relation:of both.But.alko here the deviations were generally - negligible. Neither with pectines from Orientaf.and Chinese . Virginia tobaccos nor those.from.oversea cigartobaecos.any' : sigPUicantdifferences ofthe.average molecularsizes.could,be found. Thiswas indeed quite thee same withpectinesh from both .`• cigarette and cigar tobaccos.. (From Ehglish summary) 711 ,1fRI1CI C.; MOLDENHAUER,. W. -• - , UntersuchungenUberTabakpektineundd'erenEinflussaufdie Tabakqualitfft. (Tobaccoo pectinsand, their influence on the qualityof totiacco..)~ Nah~rung.7(7):539-44, 1963. graphs. (German). . TX341 N27 Thequalitative and.quantitativepectin changes during.g the.grow[hof'the plant.depend mainly upon thee biological status of the leaves within each harvest.period arid less.upon variety,. The pectin ' ` changess during, curing and fermentation aree correlated with the severity of conditions. Air-cured and bulk-f'ermentedtobacco eont'ain inter alta the pectins with the lowest molecular weights. Peetinss isolated'.from fixed.green material as well aspeetinss Isolated from cured'.and! ..fermented material!conta.inacetyl groups:... In, some casestobacco.quality and pectin.conlentn are in- y verselyassociated~ . but.there is no general correlation. With regard to molecular weights there are no,significantt differences~ betweempectinsof Orient and China.Virginia tobaccos;and pec- tins of~ oversea.eigar tobaccos. (English summary)'. 409 007217386
Page 7: fiw68c00
n TeaLe I Analysis of Pectin Samples Sample No. I 2 3 4 S 6 s d ~ ° 1 o ~t 8 R 9 © o- Q ~• 10 ~ 11 ~ ~ 12 ~ ~ . 13 ~ ~ ~ ° Tracee. ~ 9' p Degree of Origin of pectin polyuronidea esterification apple I apple II wild apple citrus I . citrus II sugar beet .' sunflower 87•7 58•0 90•6 5•6 87•3 263 89•5 293 883 77•3. 91•4 89.8 90•0 ' 95•3 75•.5 49-7 68-4 38-6 92•9 . 29•8 86•3 66-0 81•5 27•1 92-4 ' - 26-3 i'1 Sulfate ash Molecular weight Neutral saccharides (molar ratios) Mg Gal : Rha t Ole : %yl : Ara 0.5 99-000 11 7 4 5 4•5 0•5 46 000 0•3 57•000 03 68 000 0-4 96•000 . 0•3 77•000 0•3 45•000 0-7 57+000 10 5 14 1_ •5 2•5 0,5 39•000 - •" Glc • - 0•8 29•000 7 5 - 0•5 109•000 7 3 _ 0-3 4l•000 9 , il . 1,0 30•000 4 12 7 1-7 1 ..u..r~.,. MI oc»»~H0~rr ~o °wcp°No~+.'pn,~~a.~ ... .. `' ~ 'd ° ,• ~ ~ .~. 1~ 0_~ 11 7` I^1~
Page 8: fiw68c00
ABSTRACIIS -~ Differential thertnogramsof poiysaccltarides.. G. Chus, ters anel Ss O., Tbunrpsuu. (Umiv.. of V.'isvonsin, - ...:M sun . Scinue133,.275--fi(I9G1).-Ammtbe..r.of enrr,tgcrn;ms. a - nud other polysaccbarides (iucluding -licnliceflutasc 13, •otnyloce„ amylupectin,, atginric aci( L and pectiu)I wer,esub- jeete& to differenli:d thermal analysis. Tbe c:rrragoen;tns,. althougb fram di0crcnt sources, had esscrtially the same ahermographic cllaracteristics, n'ith a.sharp,esotdmruta in ttle- _ 20t1P region and a large, broad exotherm stnrtiugg at ~250°, , reacLing a max. at 400°. Thc exolhcrnt at ?00:° was not : displayed byanyof theuonsulfated polysacclrarides. . _ •It..l:. 13url-hurd. ~ - Coated sauaage.\4cslcv If C ii!d's(t *.lrnmur CCo.)., U15. 2,811,453, (kt Lt}, IPlrir. ',tirr rust" nul saavgc is- largcly pnventcd by coaliug tllesm.:wtgm wilh? lap-ers (if.protectiivc cnatiugs. TJm ]st covering is crmapu.cd of„• gclatin„ algiiu„ or. lxctitt 31'..3, glyccnjl 6.4, corn..irup 5,0, r gum arabic0.M1L vincl;ar 1.0, . and~ uator 'fhis. arwtingg is appliedd at 13;i f°. athll hardcncd at abmtt.7t1°Ir.. : Tha2ud. cr.rling is¢uinq~uxd, nf 1:Yyo cllh9celluthse und 3770. . - Tit©ilet and it is applied over the 1st cuating,at i0!Of3.. Pro- langed.slielfAifeis.alsoclaiutedfnrsausnget(niscnalctl.. ' James li. Nebster..,~ (~The ¢apacity of'oxfdasc: for ozygen abaorption in the1LSolovato brandl of 6obacco. witlt large and small leaves ' isgroatly dependent oc ttiae ammtntt of moisture and fer- mentation. mentation: P. Cos&.~a.. Bhd. ctdlmirii fennmttr(rii, .• 7•idnnnliri 3ii, 2f1-r"rI'JC2);: Cmnr.'Lentr..1943',1a', 1153., -The degree: of: fennentation iss proportional to. thrinitial'e moisture content (14~20%) and theamt..of the.fermcnt-, ing, material. The hygrophillic pectins are actiuated" gradually duringg the ferrnentation; this causestl:e reten-' tiou of. a)arger anrt.,oflfx0'. and a larger surfacc<ontacG. ... bettpeert oxidase andtobacco.. J..-C. Jtnrrjcns f 'Protection of surfaoea frarn a noxious atnmsphere. )a8:. De. t4ent. U.S. I'at.. AnL. 301. O~.iaC 6a.. 671,: 14J.7(l.7-.r3), A Oorvnble foarn in a subsl:mliall)•y unbroken layer 'rnay be used to cover a slructuree to preventt airborne noxious i agents. lrotm coming into contaco witht tim surface of thr +structurc orf cntering iirto it• The Ob+callle foam used is . eithcr of short.term stab3lity and'd corttauts st~ nr,niolasres„ pectin.,,albumin, peptunc, hTa ola.'ttc, or antmunium resinate, , orof Jbng-teren "stabilityy and contains regcnerated cellulose,. , polyvinyl ettforiifc-acetate, or celltd'ose esters anrf ethers . dissolved iu.suitablc solvents. M..Af. Berry' i
Page 9: fiw68c00
p w Selectivity Coefflaisnt OI Exth4nge Ot Cd=i and X+=Ions in 1?ectln (RK ) , 'Pes[.e IY ~ :: g e x . . •'8ample No - Oeigin of pectin Degree of esterifieation' logKKC' 0•10 0-05 0.02 0.01 appleI - . 5•6 2-03 ~ 0-02 2-05 f 0-01 2-03 f 0-03 2•33 f 0-04 2-44 ± 0-05 3 26-3 1•41 f 0-03 L 0-08 "1=46 1-34 } 0•04 1-41 f 0-04 1,24 ,f 0-03 4 29-3 1•04 f 0•04 ; ; 1•16.f 0;04. 1•26 f 0•07 1-32 f 0-09 1 Z9 ~ 0•06 1 5 5g10 77•3. 038 f 0-03 .. 0•43f 0-02 =~ 0•04 f 0-02 0-49 f 0-00 ' 0-25 f 0-06 0-10 f 0-02 -0-09 f 0-07 ~ 6 89.•8.. ~.- ~ . . ,.-0•19f0.02 -0-19 f 0-06 -0-29 f 0•05 9513• -0•36 f 0-06 -+0-32 f 0-05 13 sunflower 26-3 1•49. f 0-02 . 1-46 f 0-01 1-58 t 0-01 1-50 ~ 0-02 > 12 sugar beet 27•1' i 1-42 f 0-02 1-42 d: 0-02 1-63 f 0-03 1-47 ~ 0•03 10 citrus I 29-8 1-34f0•02 1•45 f 0-04 1•50 f 0-06 1-36 f 0-03 9 , wild apple 38•6 -- 0-95 f 0-01 , 0•93 f 0-02 0-89 f 0-04 0-95 f 0-02 8 apple II 49•7 l. 0.69 f 0.02 0-57 ± 0-01 0-59 f 0-06 . , 11 ~' citrusII 66.0 ).0•53~f0•06' 0-50 f 0-02 0-34 f 0-06 0-34 ± 0-06 -°, soD&z4oo
Page 10: fiw68c00
4478' TABLE IIIDepcndence of StlectivityCoefficient k~" on Ionic Strength of Solutioo Chondroitin-strlfate.A° Apple pectinb ion exchange ca2+ -. N' 0•013' 0•023 01021 0-030' 0947 0-060 0•075 0•097 01160 0-160, . Na+ Caz+ -s K'. kNy R. k[ . 0.09 . 0•01 0d7 0.16 0-02 0-39 0,29 091 0-42 0•05 0•75- 0-57 - ... 0-61 0-67 - 0+10 1d0 0,75. . ' 0i8o 0-15 1-611 . 0.180 . -.. 1•I7 0-264'.'" 1•73' 0346.~'~ -:1•80 ~' 0~520~~ ~. . ~ 2,70 ' The selectivity coefficients of the exehange of Caz*- and K+-ions in pectinia de- pendence. on its: esterification degree and ionic strength, of the solution, are given in'Ilable IV. The KK`-values were Galculated from equation (5). The results indicate that lheselectivity coefficients calculated strictly on.the: basisof equivalenti fraetions, X are approximately indcpendentt of the ionic strength of the solution within. the value range from µ= 0-01' to µ= 0-15. The greater difference was found only with pectin esterified: to a low degree; i.e: sample 2'. (E = 5•6%)'i where higher KK-valtres were found for ionic strengths µ= 0-01 and µ= 0•02. In all the remaining cases the results fluctuate near the: mean value of the selectivity eoefflcient. As obvious from the data given in Tables III and IV„ the behavior of solutions. of acidic pnlysaceharides during ion exchange is' different from the behavior of syn- thetic ion exchangers. So far there is no satisfactory explanation for this phenomenon (cf.2e), ' . -.. . When following the ion: exchange on synthetic ion exchangers over a wide: range of cation concentration (K'M, = 0 to 1) we find that the selectivity of ion-exchange varies also with~ehanges in the composition of the solutionL , the sel'ectivity eoefficirnts Ceile°YOO~Q.eclia.7ov. Chcm. Cammvn. /Vot. 1r/ (t96n ~ Y + t`$ 0 1 + 1 5 ~ d w `o
Page 11: fiw68c00
DE' LA BURDE;, R. ; NORMAN, S. F. Lsolation and characterization of the pectic'substances from t'obacco. Tobacco 1(17(25)24-8 (Tob. Sci. 12: 23G-40)I, Dec. 20, 1988'. graphs„ ref., tables. Two types of pectinic acids'- free pectinic acids and pectinic ; acids derived from protopectin - were isolated from tobacco~ t lamina'and.nlidrib of a singie sample of Type 11A, flue-cured,. 1963 crop- The contents of both pectinic acids were always ; greater in the midrib than in the lamina.. The lamina and !]nidrib"tree pectinic acids" appeared tobe homogeneous in. l, conxpositioawhen hydrolyzed and examined by paper chroma- lography and'by moving-boundary electrophoresis. Their eqvivalbnt weights were 189 and 187, respectively, which in- dicatedia high degree of purity:, The. viscosity averagemole- cuL1r weights for the "free pectiiua acid" from lamina and ;i44 tndribwere 5.8 x 10 and.5l.5 x. 10, The heterogeneous ' pectinic acids derived fromm the protopectin of tobaeco lamina ;, and midrib were composed'of D-galacturenicacid, galactose, arabinose, andd traces of glucose, xylose'and, L-rhamnose. The non~tmiformity of structure was aLso confirmediby movln~ boundary el'ectrophoresis which.sepa'rated the derived prc~w~ acids into at least three anionic coriiponents. The equivalGnt weights of pectinic acids from protepectim were 215 and 228.1 ' ' The viseosity average-molecular weight's of derived.pect:iilie, acids from the lamina and midrib were 4.4 x 104 and 4.0 x 104. (Abstract) 1sf 48910J. Destructionn of pedinn crosslinking in recon,tituted' tobacco. J) Edward J. (1t4orru,. Philip, Inc ) Ger., :OHen. 2',200~188 CI. A 248)l '-0' Jtdi 1072, USAppl 104,459, ,. '` 00'. Jan 1@71; 13 pps A methodd is:de.scribed forYhe destruction_of pc<tirucrosslinksin reconstituted tobacco using hent'and mono-:. basic fiatty agids with~6-18 C atoms, polybanic fatty acids with 2-12 Catoms, or theiir mixts. and N~lI,C)14'. (Pf@ 0-10); poly: ` ' lWtiidith212Ctd\I1Q11 monorbli .carxycacsw-anms.an...;caosye ~ ' s.altsofnmaw-for. atomsand.Nl-0~O1I, Nli. ;nacidswith6-t8C ~ lblicNH'ifiid poycarony acids; or„ with anons.o varousorgs acs, 'tsp. citric or olcic acids,.or these acids andi ti11," citrate. V.. N. Nckrassoff ~ G1159y. Smoking' product from coffee bean hullk. l<+ •' }:dward'd. (fvh,rris; Philip, Inc.)i U.S... II,77G:22: (CIl A. 24b)y 12 K7ar 1974,. Appll l2r,;34If, 17Alam 1971; 0pp., .. Coffee hean hulls arc' cmmminuted and slluied willv a reagent. capable of destruying the alk.. earth metal crosslinks.of natural. :. cnffee bean hull exocnrp, mesorup~~ or chaff protopectins to.release.sni& protopectins which lhmm icl as.a binding agent so that: the: hullss may he cast and d ried 'oitu s6cet form. 'rhe hnlls . mnyy also bo blended with either tobacco or other nontuhaccosubstanoes tomakc a lolendivf smoking Iprorluct: 'flne pectin, • reICJFe' prncednre.is described in U. S. Pat. Nos. 3;3'a3rsll(CA. : 68;3fi851w,), 3',42%241 (CA 70:85097h). R..A. Nelsun~ V ~
Page 12: fiw68c00
nasTrz:acrs C.'..'~ -;761 +PYRIHI C.;. MOLD.ENHP:UER, W. ' • vestiga.tions.on tobacco.pectines.and their influence on -- the quality of tobacco... DTesden Inst.. Tabforsch.Ber~ i• 10(2):238-63, 1963. tables. (Translation) 35p., (TLS). See also: TA 8(2):nos 409, Feb.. 1964. See alsoc TA 81(4):no. 711, Apr. 1964. 1 1379 / PI'.Ri'RI, C.;.MOLDENIIAUER, W. UntersuchungentfberTabak-' ixktineundlderen Einfluss:auf.die.Tabakqualitdt. (Studies:on " ' tobaceo pectins and.their influence on tobacco,quality. )', World Tob. Sci. Cong., 3rd, Salisbury, South:. Rhodesia, Feb.196& Papers, Theme 2, Sect. A, no. 13. 20p. 'tables.. (German) . (TLS) wn~relationshtp between the pectin content's.and tobaceoqualitryr ~~ ras~estabfished.~ . . 1444 ~ ~ ...._. . . _ ~. . ,. . .. .~ . _. _.. .. _ ._ . ~ pYRIKI;. C.;; MOLDENIHAUER~„ W'. ~ Anatytik der Tabakpektine~.~ ~ _(Analytics of tobacco pectines..) Dresden.Inst. Tabforsch., - i)er..9(2)::306-18, 1962'.. table. . - ((",erman)~~. ~ ~ SB273 A2107 918~~. T&e festing of'~ sizings (for tpxtilus) ICarofy Ramasxerler. .(FOrschungsit¢t. Textilind.,.l3udapest, Hung,). SQtnner e rr. 'Texlifveredl. 8P(4)3U.'rif)1(1066)(Gcr).. Thc testingof sizings is discussed from ~I points of view:: analyses of'f sizings, sizingbaths, sizing films„ and sized,yams. The follorring.topics aro _disnussedM detection ofalgac-type sizings; HsO-so1.. Mr. cellu- lose.derivs., cellulose glycolates, protcih types, dily types,.poly- ,; acrylic typts, poly(vinyl alcs,), pectins, and.glycerol;; detu. ot dry sizing material bg,gravituctric methods, reftactomctric. 'methods„ viseosity„ and. adlicsivity; testingsizing. Ghus forr tear strength; detn6 of tear strength of"sized' yarns, their behavior in . scouring, or laundering,, their HdJ content, andl theirr degree of' - penetration. Thomas A., \Vilson ~ 01 44706h Utilization, of pectin in the food industry. Riaz„ ' Riaa A:.. (Mitchclll's Prttit HarumsLtxl., Rcnala. i:hurd, :F cT~. .. Sd. lnd, (Anraelri).1971, b(1), 11-16(P.ng)t , A' deceripliou andl V, review'of usage iinn fruit spnads;, fruit juices, bakery products,. , confectinns, tl;airyprodtsts, freezing, dchydralion and rehydra-~ ' ' tion, storage„picklling and eouking, nud sugar utanuf. 11 refs. O Atviu lV. ifofcr , %J . . N
Page 13: fiw68c00
4484 Kohn,.Furda, 6. Schweigcr R. G.: Kalloid-Z: 196, 47 (1I964).. 7. Schweigcr R: G.: Kolloid-Z: 208, 28 (1966). 8. Zit7to V.,,Rosik J.,.Kubala J.: This Journal 30, 3902 (1965). 9. Kohn R.,.Furda L:.ThisJourna1.32; 1925 (1967):10. Kertesz.Z. L: The Pectic Subrtances, p..223'., Interseicnae, New York 1951. 11. Tibcnskq V., RosikJ., Zitko. V.: Nahrung 7, 3211(1963). - 12'. Kohn R.,,TibenskrV.:. Chem. zvesti 19,98 (1965). 13. Owens H. S.,.Lotzkar H., Schultz.T. H-,MaclayFV. D.: J. Am. Chem.Soe:68„1628'.(1946), 14. Raaflaub,J.:.Z. Physiol. Chem:.288;.228!(1951'). 11 Raaflaub,J.: Z. Physiol. Chem. 328„19®'.(1962). . 16. Buddecke E.,. DrzeniekR.: Z. PhysioL Chem.327,49(1962): 17'. MathewsM..Ba Arch..Biochem..BiopFiys. 104, 394'.(1964).. 18. Klotz I. M. inthe.booke The.Proeeins.(H. Neurath, K. Bailey, Eds). Vol. I:, Part. B., p. 748; Academic Press, New York1953. 19. Babor K.,.Kal16 V.; TihllrikK., Rosik J,: This Journa1.32,.3071 (1967). 20. Dunsaone.J. R.: Biochem. J: 85,336 (1962).. 21: Rot.hmund V., Kornfeld G.:Z: Anorg:. Allgem. Cfiem. 103,129 (1918). 21 Haug A.rAota.Chem. Soand: 13,1250 : (1959). ' 23. Smid'sred 0.,.Haug.A.rActaChem. Scand.l9, 329'(1965).. . 24. Haug fv.,. Smidsrod 0.:ActaChem. Scand. 19, 341 (1965).. . 25. DjurfeldrtR.,. Samuelson, 0.:Acta. Chem.. Scand. 11, 1209 (19457)j 26. HeBferichF:: IonenausPauscker. Vcrlag, Chemic, Weinhein 1959; Russian translation„ p. 149. Izd. Inostran:. Lit:,. Moscow1962.. .. br V. xo.u~ IJOTES q'ABLES OF QC ENERGY CHAR 14'ITH EXOCYC. I,Q.Ticttv and'. R.Z fastiture aflnd; cndlnstitute of Czechoslovak A' This pant of the T a 2p, atomic orbi(Iable III) system and, publishedby , the: Tabless compl, . cc Part XIII: Caa«d.. o,=sor.., Ce~ C.~ve. rvot 321 ussn
Page 14: fiw68c00
4484, Kohn„Furd, 6. Schweiger R. G.: Kolloid-Z. 196.47 . (1964). 7: Schweigcr. R. G.: Kolloid-Z. 208, 28 (1966). 8:. ZilkoV.,.Rosik J., Kubala J.: This Journal 30;, 3902 (1965). 9: KohmR., Furda.I.:: This Journal 32„ 1925. (1967). lo.. Kertesz Z. L:The Pectic Su6stances, p.,223. Interseienoe, New York 1951. 111, Tibenskf VK., Rosik.J., ZiakoV:: Nahrung 7, 321 (1963). 12. KohmR., TibenskyV.: Chem.,zvesti 19, 98 (1965): 11 Owens H. S.,,Lotzkar H.,.Schultz T. H.,.Maclay W. D.: J. Am. Chem..Soc.68, 1628 :1946), 14.. Raaflaub Jr Z. Physiol. Chem. 288, 228 (1951). 15.. Raaflaub Jc Z. Physiol. Chem; 328, 198'.(1962). f . t. 16. Buddecke E.,,IDruniek R.:',Z: Physiol. Chem.327;,49 (1962).. 17. Mathews.M. B'.e.Arch. Biochem. Biophys..104,:394'(1964). 111 18: KlotzI. M. in, the book:: TIre.Ptoteins (H. Neurath; K..Bailey, Edi). Vol. L„Part B., p. 748~, Academic Press„New York 1953,. 19. Babor K_Kal6t V'.,.TihlSrikK'., Rosikl.: This Journa132„ 3071. (1967). 20..IDunstonel. R.: Biochem. J. 85, 334S (1962). 21.. Rothmund V:, Kornfeld G.: Z. Anong. Allgem, Chem..103, 129 (1918). 22.. Haug,A.: ActaChem~ Seand.,13, 1250 (1959). 23.. Smidsrod O., Haug A.: Acta Chem. Scand. 19,329 (1965). . 24., Haug:A., Smidsrod 0.: ActaChem.. Scand. ]9,.341i (1965). 25.. Djur&hltR., Samuelsom0.: ActaChem: Scand. IJ;1209 (1i957)., / 261. Helfferich, F.: lonenaustauseher. Verlag Chemie; Weinhein 1959; Russian translation, p. 149:. ~ llzd. Iiuostrau. Lit., Moscow 1962. Translated by+V. Kosdve.. . Collectton Ca«hoalor. Cbem. Cuuuoua 1MoL72i(19S1)'. NOTES s- TABLESOF QU. E19ERGlr CHAR,SVfrH', . EXOCYCI g.f.TICHYand R.Z. Instituteoffrrdu and7nsaitute oJ. Czechoslovak'A This part.of the Tc a 2pe.atomic orbit (Table III) ) system. an&published by c the Tables comple aa
Page 15: fiw68c00
GRADlNG OELOW-ESTER PECTLN-729 d F}}gyyrand, OF la`uF.ned ;10hug glVen it ~ of the ;reaking culated' IfeSiure ionship 5-13.5 realung 1 these xst lo Smaller se data e of an may hg exam.. el' mak+ ,ample; = there: pie the '. Fiom or was ue was me gel, ;i'ving g A 7ppp 71 re~- r r each . I thesee m into ade at! pH of r„it io pectin values rmula. c icid qmn- nal'',p8 gestedl meas- : sug•. ible too y give above ndard live I :ftufe nufao asert ma)- -csl6 ) I alsc L . 521. Sunkist' witn Hia , Ontario, Calif. 6row.en. In sbusg. J'J' 1905. "Pec4e 9ubstanees In{!a`Freshand~Pteserved Fruitsand': Vegetnbles,"' p 41,. Institutd ror Rescareh omStorage &. Pracessing of Herlicultural Produce, WegeID inren, TheNetherlandsa f~svs4emLre9u iess only gonea oprerator. collating pracessing31(4): 18:. WIIILa sHRm n~eliy ng pecdti n tes . Proc-' Inst:.. food Technoh, p. 4P: 1)7. Cornmittee. 1.959: Pectih'slandbrdii:ation:'. Final repurt of the. IFT. Committee: Food', Trchnol. 13: 496. rirsy y.('. r95T.. "The Pectic Shbstances,"'p: g` I3 :, interselence PublishersInc.,,New. York. Langc„ D:, Bock, W. and TeuFel', K- 1961. Eval- uation of strongly- and poorly-esterified, apple pectin by the Tarr-S'akerr method.. Ernuhrongsfonchung 6: 65. lChem. Ab- strsels.59: 22841h1 Lopez;. A.. end Li', L..19681 Low-methozyLpec-timapple gels. FoodTeehnoL.22: 1023. McCready;. R.MI,.Dwens, H:S. and Maclay, W:D.. 1944. Alkali-hydtolyzed.pectins are poten-tiall industrial', products:. Foodl Ind. 16: 794. Owens;.H.S:, MtCteady, R.M, and Maclay, W:D.. 1949. 6elationn chasacteristics'of acid-precipitatedpectinetea. Food Technol. 3(3):77. Owens„HiS„ Porteq 0. and Maclay, W:D. 1.947. New device for grading'.pectins. Food Ind'. 19: 606. Pilnik, W.. and'. Voregen, A.G.S. 1970. Pectic substances and otheruronides..In "The Bla- chemistry ot Fruits and Their Products," ed. Hultne. A.C., vol: 1„ p. 64. Academic Press, New York. Smit CJ:e..and Bryant,.E.F..1967. Pioperties of pectin, fractions sepantedwn diethyl- aminoethyl-cellulosel columns. J.. Food Sci. 32: 197. Msreceived 3/17/72';rnvisedl5118/721acoepted 6/5(72. Presented, at the 32nd Annual Meetingg of the Institute of Food Technologists in Minne- apolis. Data were taken from the M:S. thesis of S.A.H, who received support inn paeL under Training. Grant F,D-00006, U'.S. Public.Health Service:..
Page 16: fiw68c00
The swelling of (fortmddchyde-j soaked peclinoosdcrial ' at'various dvdreesj of eslerilicatiolt. Il. 1)r url . mtd.. (,. ~ ~ ~ - H_ uber (Tech, IfochschtilC, %Ilrleh'„Sn9tz.), 11rIK LI4iJ$ . lCc/a 33'.,.10,-13(I9u0)(ih: Cectnan); cfl. C•sT. 43. 140g,- - . Sapon, of tlm.formaldehydc-soakede hydrosypropyl ester of.; Pectitc acid with cotrtrolkd'd aents., of NhOtl yirlrled' pro-.. 'd't¢ts ofdi0erenG dcgrecs of csteri6cntion. The swelling 7' ofl'these prepns. in water iuereased with increasing degrre `„ of cslcrifioatibn. Theswelliug tvas slightly less in a phus- . phatesoln•buflcredata:pHof:ti.9L, =f'liissecllingplmtmm- ettonhilh U was related to a stretengo the trcad-likc mols . ._by.thciutraluctiouof'Lhqcsti:rgroups.. H.L•.,Jr. - ~ Relatiun between the behavior of pectic.substances and . ~. ehangesinfirsnnesuofhortihulturalproductsduriitgHeating:. J'. J. Doesbun (1nst..Researolron Storage and Processing ' of Horncvl Proditce, L4ageniugeu, Neth.):. QuuAlas :Plantanun et Nalernae Vegefabdfes,.8, I1-r29(1901)(m. Fng- lish).-Sliced„unripe beets; turnips,.potatoes„and apples . were cooked, at 212°F: for 10 min. in 0.5% citratesolns.. -adjusted toPH levels fi•om 3.0 to 6'5with HCI or NH,,. Greatest firmness existed between PH 4.0' and 4.5,. with J low•estt sol. pectiitn content between 4.5 and 5,0. Pectin- ~m filmstriys were suspended 24 hrs. in-ale.n solns. of AcO1Ij,(COnH.)i(. adjusted , topH 3'.0 to6.5- Adecrease in fdtn strength tookk pWee at. higher PH in both solns., accom- -_ panied by swelling and wt.. utcrease.. Slices of killed, un- heated apples were immersed in AcOH/(COlH)n sohts., . adjusteditopH from 3'.0 to 6.5• Firmness remained fairly ' const. at low and decreased at higher PH ranges„w/iile soi.. pectin increased gradually.. Aliquotss of a. la5o pectih. '-suln, contg. lactio,, citric, and phospHoric acid„adjusted to. 1 PH SA, to 7'.5, were boiled 15 min. The pectin content. rermainedialmost eorts9: in the lower PH range,.butdepoly merization took plhceat the higher level. Jellying power " droppediat PH 4.01and reached near zero at 5.5: 61 refer- .:' .-ences.. . HansR.Schtnii)t e-Poams. A. V. 1)utnansku'T. A. Granskayaand. N. V. Novikov- c n leu.rudral. brocl:em. Farschnngs- iiwd. Nakr..Geuassmi6cfind~- (U. S. S. RI.) 3', 36d~91. (1933):.-Lip.tl. sfiudicss of foams.showeds the desceudingg order of foaming power inn hydrophilic eolloids to: be:saponiit,: molasses, peptone, gelatin, aLbumin,, pcetin,.. ... easein.. For albumin the max. oecurs just below the coagu-.' IYtion temp.; max. foant stability was found at', pn 4.7. 5 Replacing air by 004j or SOl decreases the stability but'. . not the amt..of theioam. . Julian F: Smith ~ ~ Chemistry of gelation oC the pectic substances.. G. Pi-0dnumn and K. T(infcl (Inst. P:ru.`itnnugsfnrseh.,. Pots- r:mn- e t riicke,. Cer.)t O:nNihnurRdjors, krng. 1, 260'- 0 70(I:Oulij-A>dismtssion~uF thc cbcm. cnnsl ilu[inn'.of pc¢tins, 0 .thur polyxacctbrWe nature and polyelectrnlyte beltavinp.,. ,: antt the structure and.thc fuunatiun oF pcctiu g}•ls, Many ~ - references. Ptan 1Solira ~ (n~ W
Page 17: fiw68c00
13 c~~W . 113; - AnssrRACrs' ~ Influence of variousprctreabnents.upon theswclling of _ hemp fibers. P Lzioav and Ti Kr9tik, Magyar TcsriLlyde: 1455; 247-50; I nrc'sh. Abslr..g. No. 2;,Abstr: No, 110. (19,56).-ThC¢hangcs inthes+vclOng ability of hemp fibers . • w'eresttidicd after thee following% trcaflncuts: (i1) boilingwith soap and soda.ash; (2)kier boiling with caustic soda; (3). noncorrosive blcaching with. NaC10,; (4) kier boiling. , _and bleachingg with, NaC10:; (5)) acid.d hydrotysis;: (O)') inr- pregpatiott with basic Cu carbonate against'mierobiolt deg:- ' radation. In each caseau increase in. the,swclling abiliDy could be observed w•hichh inditates.that.the.swclling ofthef bast.fibus is notcausedlprimaril'y bythe pectins. With , thce gradual removal ofthe pectin substances the inicr-.~ capillary voids within the fibers increase;. the stivcture ob the . fbers becomesJooser, thereby increasing the accessibility. r In easee otuntreaced bast fibers it can be assumed.that.the clpiLlaries of the fibers are closed or at least narrov:ed bythc -svetling pectiirs, thereby preventing Grrther water absorp- . ~tionaftertheiiritialsvelling. Thex-rapphotographstakeu , --inadrystatealsoindicateloosenedfibcrstiructures. This explains the fact.that atthough, the greater part ofl thestronglyswclling pectins has been removed during theYreat- ' ments, the remaining bast cellulose swells to:a far greaterr extent than the initial bast fiber containingg pectiirs in large: quantit9cs:. The degree.of swel)iog,wasrueasured by a.newa miaroscopi~c method. K._L.C. ~. JACIN, Ai. ;: M061fY, R. J. ;~ F1OR};,, J. Y: . Characterization of.pectic substances.imtobaeco.stems. J. Agr. Fbod Chem. 15(6);'1©57-62, Novs/Dec. 1967. graphs„ illus., tables- The llncreased importance of'reeonstituted tobacco leaf in -clgarr and cigarette manufacturing practice has increased the _ utilization of tobaccostems. This paper describes a method ~: of extracting and' fractionating the pectioc substances in aa number of cigar-type tobacco st ms and'shows differences in the amount and kind of pectic substances found in cigarette >tndlcigar tobacco stems. The monosaccharide components oftlhe isolated pectic-substance fractions were identified'by thitt-layer chromatography, andi the galacturonic acid in eachi fr.tction was determined quantitatively by a.colorimetric "method. Infrared spectraoffillns prepared from the isolated ~' Pectic fractions showed differences i~n~ the~ degree: of esterifi- cation of'thepectic material~s.The isolation procedure and the qualitative and quantitative data obtained are discussed. .. (Abstract) .. 167 . ~ Pectms,pecticacids;,andtheir.gels.. Ccorgcsikovliv-.- Inds. agp: ebaliueent- (1'onsji6o, d7-:A(1D49); et. ' 42, 51&18.-Ptevioru literature isreview•ed. Hydroly:sis with 04 or 1.5 N11CP, at 0+$~° and at.'_0°,nf pcctimlmnr . beet cosxttcs y-iclds pectic acids.s whose cautent't of 41CO' aurl off nongalacturonic constituents is very simil:a to. those of pectic acids prepd':. under the same rnnditiunss from upple Ponmoe. . F.N: Zerhau ~.
Page 18: fiw68c00
RASMUSSEN,, H. P. Q`alcium and strength of leaves. I. Anatomy and,histo- ,';. chemistry. Bot. Guz., 128(3/4)219-23;, Sept./Dec., 1907. illus:, table. Microscopic examination of the tearing pattern of cured,. fer- mented tobacco leaves revealed that a normal leaf tears in a. etraf8ht line through cells, while a tender leaf tearsin an ; Irregttlar patternbetWeen cells. This suggests.pectin altera- ;' tlonas a probable cause of tender tobacco. Histological .'!; e7caminaty'onSndicated that in.normal.leaves.the upper and C:.4'. 4!9,' MSs) the tender-leaf cell walis and middle.lamella~. (Abstract) tender leaves'. The striking difference between norffial.andl tender tobacco was in the calcium content. Approximately ' 10 times more calcium was localized in the normal than.in ents (pectin,, hemicellulose,, non-ceilirlosic polysaccharides;, and' cellulose) appeared to be the same for both normal and lower epidermal layers.were intact and distinctfrom the V disiittegrated parencliyma of.the Leaf interior. The epidermis of tender leaves were not uniform and were usually not distblct from the interior parenchyma tissue. The cell-wall compon-. - --~ Bacte:icidal, tobacco.ReuS 12ondeaa. Can.. 485y388L-Aug. 5,1953.. A method has bcencuerped f6r providing a svokihrg tobacw.which keeps itsfreshness.for a.lougtime. ~ and wli(ch, on burniitg; purifiess xui enclosed atm. by i;ts. ' germ-killing: action. It consists ofi mixing together tri- i etliylene.glycol 25, propylene glycol 8.3,.rawsugar 41.7,. -' and.pectin 25P/o,.heating the miict bysteam.to.the frothing. '1 point„ spreadiugg the tobicco'.leaves i~nn an, enclosure heated . : at 125~°F,., and mcchanicallly. vaporizing ttiefrothingliquid ; ~. oMo tfie tobaccoleavrs ttntil.l2'oJe. of', . the liquid, by wt., has been absorbed by thefeaves.. . C. Te. Beland. J ~ 21377hChangcs in pectic substances during ripeninp ofavocados. Rnusn; A. Pf.; BaFmore„ C. Rl (Agric. Res. Edue: Cent., Univ. Flo iida, LakeAlfred, Hla.): HortScisnce 1974, 9(7); 3n-7 (N]ng). Mature but unripe avocados{, stored. al. 10 or, t. 21..1° showed.a rapid d'mpp iut per.tin esterasa aativityjust.priur to, softening, andl whemi softening occurred enzyme activity was minimall Tissue softeningwasaccnmpanied by increnses in twater-sol. poctin xnd decreases inn nmimnnium nxalate-soL. and ' 8laoW-sol. pectins. Therefnre, pectin is dagraded dlain¢avocado ripening, and a measure of thisdegrdhs may indic•nteIhe. , degree nf ripening in ctorage. ~ F. S,Stewart „
Page 19: fiw68c00
9d8iTg Pectins in-the teaves of plants frorn the Niiotiann - gPatls.. Illaiin, Kaziutierz;, Sxynal, )adwiga (ltrst. Chcnr. Tc•clrv nol'. Itolncl 'dyda. Itoln.,, Wyzsza Sxk..I2oln., Lrdilin, Pol.)'. ,. Ann. fl.rsiv. d9arrac Curic-S•k7odotvska,.Sect. L:.1970, ^5, 913-20,(Pol). Pectins in leaves oCN. frtGacnm„ N.rurlirn, aud M.ginuca I were dctd. Leaves of N.. rus(ica contaiucd hiShcst.concnst of ' oto ti L ' pr pee ns cavcsof NfoGnaunrcontaincd'petiif ....cns o' higb degrce ofthltid Inf hl FT .e inevaon anweonrns, onnur~.--- . ; wcrecollectedlfroandiffercntplantheights. ,InagingN.lnBncrnm' '. pl'antsi content of protopcctin ia leaves decreased and of sol.. pectius increasedL The pectins of young feaveshad thehinhcst. , rate ofl metlij•lation. SoLpcclins anri methylated prolopectins, were 2.04 and 1•1]°0,. 3.40and and 3?0 and 0."rfl"lo in diynratlter ofleaves bef brc drying„ Pflcr drying, and af'2er fermn-,, resP- ._ _ ..-_ .. , . ._ . Y. Pomermiz.-~ ~ Iimprovemcnt htn the bakin of -g Pastry. C: H. i3r L ra n •rr- ... Sulm. Bclg,.660,413,. Jant. 5, 1,066; Ger. AppL. Jul}Ir„ 11164 . 10pp., Anintpro3md process for baking pastricsis elziunxl byy adding.to the flour0.2-0.0°o.(wiL, respcctl.to theYOtal quantity^- i,of dough) of.f a thickening agent, such as starch, algiuate;; cm• ~ ragecnattr, agar, carob [dour, pcctin, tragacauth h gtun nrnbici . , . or <cllul'tisc cthcr.. .I;', ,.'pnblrr -~ -' Thoe dependence of the hygroscnpic properties of tobacco on itss chanrical conrpositiun. A. 5.. llnro>.dino- lnLnk. :(tl',ti,Sl]e.j 12; Nn.3:, 4'55(IU51.j; iI(.^.;iStii,:cf. C...1. 97, R97i1, B;::Ik.-Vurious k iud> of tnbat-¢rr wt•re extd'~ with water, CHCy:(extn. of'resins), (ISFtr):C--Or',(extn• or'.pectiirsubstanees), alknlicsy and'aeiils (extn.. of.cclhdose)'. . After such exlnm-, 1-1.55 g. s.-unples were.l:cprin a desiccator at 100% . relative Immidity until tlle wt. became const.. or until moltfl began tb grow. The water absorbed under" these. conditions, when expressed as pereentAge of the dry suh ; slance, iss taken as the specific water capacity (SWC). , Dettts. ofltAe extd..matcrials, total N, ash, reducing matter,, . and carbohydrates.svere carried out by'L'te'.usual.utethods.. -IY.was tnuud that.the absorption.of water,., andtherufore the SWC, depended prirnarily upon the content of water- ~sol. substancesand colloids.. Thr.SS\'C was directly pro• •- portionaA to the content of carbohydrates and reducingsnb- hibh stanees. Te pectn sustancess affected te SWC too am extent eorresponding to.ttreir osvn.eapaeity tv.absorb water. . aud.Lreirdegreeof'dispcrsion. Cellulose.had.asllght,const. . effect on the SWC; resins had no,effect. 31. C.Nlootc_ ~ - ~ 1130G8j. Peetir.substancesin,cured and! uncured'.'tobacco, E,J B,-, ., J. R. i'ridhara,.and II. G- J., Worth (Univ., Loto- dmr)l grnckcn,i!rry 6(3), 48:$ 71(IDG7)(Gng): Phcliu fromeured lulCslems of Bright Virgiuia.tobscco has a,vanhydrogzhrc- turoniaacid content of >00;~ and ompartial hydrolysis with:h pcctina.sr.yields di-„tri.and.tetratialncttuonic acids u',tlr a-],i- ~ linkages.. Tlm acidic poUysacdmride was rcducedwilly dibnranee toLlle correspondinggul:rctan mtd'thcn subjectcdt'onmethylatinn, - analysis., TlirfreshlcaN'peetiu has'nu, mihydrogal:rclrtrowcacidh emttent't of -20^fo and„ unlike "cured"' Imctin, rcaditly- yields 3'~ oligofiacebarrdes oll partial hydroPysis. Oun wasidcutiGed usi - 12-0-(m-galhcuuwty(j-L-rhamnnscaudlhuothcr2'wcrc.cmnlwscd'' , of lneluronic aciilland gnlaetose.. 8$referenecs'.° IP• Ii:mburna ~~
Page 20: fiw68c00
~ `stppg are co f soI,Ynalysi r•f' nofc rA.fl Ye iri and onl; r~cht of'nor y the normal Pf tbe appa ~,-iunr revea .slcNnr conte Different s Y between ~.fittned' by .V~tals are z Fs,acco and .:artic acids Y,are abunda roumably, .y competing .tYVEaaErr. P. J Ass., New. Yc t,,,tu„fi• 1953.1 4.x.-etS W, W. Ca„New Yo yuvoaR G:.195. practice. Uni~ InsEN,, Wl. A. Co.,. San Ftar 1rssENn W.. A., r 9uT. GAZ. 128(3 DEVELaP: ~ witkr the sh ttll wi bispori: integr: feniliz a mia r Fte.2. Photemiirographsofsequentiat'extractionofthecel0.wallicomponentsofnormal(A.,.C,E;andG)andtender(B„ D, F, and H) toliaceo:leaves, X417. A andlB, PAS of the total'' polysaccharides of thee normal and tender leaves. CandlD, PAS after removal of the'e peotinn withammonium oxalatc. E and' F; PAS'after removal of bothh the pectins withammoniumosalau snd the hemicellh/oses with 4%sodium.hydroxide..G% and.Ff, PASS after all other cellavallcomponents have been removad including.non-cdlulosic polysaecharides, with 17%sodium:hydtoxide, leaving only cellulose.inthe sections. C ~ ~ N _j Mi1 IF+ OD Wisteria Siit ly Leguminose of thee genus i exhibits the t diadelphous sc ti6n is to give ''Pnesentadd South CArolina,
Page 21: fiw68c00
0' Nnnaaforicse•eetenersincamtedfrnits. E'. G:Aiidcr=on,_ .. \V: B. Esselc!r, Jr., and C. R.. Pcllers (Univ. of: ~:m. • setts, Amherst). l. A~.ne.. Deefck Assoc. 29; 770-.",(19;i3).- • There was little dif-ierence in tfLe acceptabilityy of cnmred'' peaches, pears, blucberries,, raspbcrries„ sweet cEerrics., nud : rhubarb sweetcned with either sucruvc; Sucaryfl7a (cyclh ~. ! hexyl sutfamate Na), or saccharin. The iircorporation of~ varyiugamLv, of pectin4. Na carhoxyrnethylccllrrlose; and!a. , seaw•eedeztractivc in the Sncaryl- and!saccltnrin-sweeteued ' sfiups resulted inn imcreasingtheir viscosities to.o levels re- -semblib^n.those of'sucrose sirups.. W. ]3._Essethn - Pectin substances of tobacco.. V. Cer.anccne-PorzovA.U. S. S. R'. State.Irrst., . Tobacco Invest., Drdl. 69„25pp.(1929).-raval of carbolydratcs from tabaccoo by'wasliiirg witlr watcr'Irclow 30°„ boiling w'atcrrcamscs hydrupcctin, tvhicls mn be dieidedlinto two principal frnotions. The first is sol. in ale:, constittrtes.62°o.of the hydropectin from.furmented, AO ofrom uon-ft•nncnted„ and 60% from fresh tobacco;.. . and'apparrs•. to be a pruduct of htrg<dytranshirmcd pectic substmiccs. It contains. . the carbol:ydmtess levulose,, galactomandpcntoses withimpnriLics• The seeond! fraction„ Pptcb. front the nq. soln.m of liydropcctin, by alc.,, constitutes thc tmc pectic coutplcz or pccticc acid. The chief' eortstituont of this is galacttuonic acid eombincrP, ' as tetm8alscturonic.acid to the cstcnt of 55°Jo ih the present prepns+ Tbe earbosyt ._ groups of galacturonic acid are combined partly witlt.iSlcOli, and.partly as salts with. - CsandEig: -I'ectic acid also contains 3.5-1ll5 Jo of pentose,, probablyarabinosc:. --AeOH was dett•cted qualitatikcly..- There was little difference in the pectic acid ob- tained fronr fresh.. non-fermented'or fermented tobacco. B. C. A. ~ / Determiriation of thickeners in food materials;. I•.73a1'nvuinc ((3endvc). Nim LeLensnr. lIYX,. 36, 274-81 -('Fh(uf.=Viscosity is used as a Jctg- faetor fur thr.analysis. •of'gurns,:pcctins,.and umuciingcs._ David Jorysch ~. ~ Water-resistantt tobacco sheet materfalL David ~1banA g0 -(toInternational' Cigar. 1lfacbincry Co.). U.S...2,7G9i734,. Nov, 6, 1966. Ahomogenoons6 water-resistant tobacco. ' sheet material, which hass the natural charactcristfics of_ . 1 tobacco„ is prepd.,by misingfincly dividedl tobacco with an, F adhesivcfiluo-fornringagent,whichcan bcdispersed iuwater : and whieb is adaptable too tlle formation of a watcr-resist- ant sheet, to form a Viscous suspcnsiou andd form this sus-1 - p,ensiouintoa, drytoliaccoshect. Pillermateliidondlfilrers~ may-16c.brcorporated if', . desimd., The viscous suspnrsiom is' formcd into a.shcet byy calcndcring, ntolfling,,,or by appiying. ' to an impenneablefilm-forming surface, eto.. Thc adltesivc ~ fdm-formiug.agentservcs as a matrix. for disprr.sed tobacco- '~-pnrtides. % The_preferred film-formingg agent iss a polysae-' charid'eandisusuallyu•ater.lispersihleiuthelststep.ofthe process. Ccllluloie carboxymethyl etfler, cellulose bydroxy- ethyl earborymetlryl ether, viscose,., galactomannan gunn, „ dispclsfons,.algirts, and polyuronides, such as pcctins;. may : be used'. Ln the finished tobacco,shcet,.the adhesive enucn. ; isprefcrably li 20%a, and tlreprcferrcd'.viscosity nange.of tlla~: adltesir'e formulation is:6000-20,000 ccntipoises. Thee pre- fanredl sLeett thickness range is 0.002-0.011 ilr.,, and the- 'tensilestrength iys about 900 g.Jih. on material 0.003 ih. thick. The shcet' fsself-snpfwrting: and mlierenln even after iinmersion in.water of'I sq..lt. of material. Tlurs, II part tobaccoo wasground topass an fi0-nreshsereen and'' bkndedd with 9 parts of adltesive.solnrprepde by dis.colving. r 2:6Ib. Na (carbos:ymcthy-I) cellul'ose in 17d Ib, water andadd:- Ing 2.59b. paper prdp,. 0.S.Ib. glpcerol,.0.375 lb. glyoxal,, and enrmgh 0% HCI soln. to adjust tlfc pH to 2:6-2.3. . The suspension tvas spread', on a stninlesv steell belt„dried',- ' retaoistencd„and.rernoved as.a frnished sheet. Thisprod:- i prod- uct maybey uscdin the ntanuf', of eigarets, eipars,, pipe - tobacco, or chewing tobacco, . ~ S. 0. Jones 'f L--~ I
Page 22: fiw68c00
ABSTRACTS Theswelling. of peclinsand pectin-containing ma-' .~ terials., F..A.11en Ieinand.I.l'.:rohn:(Tecb.lfochscbule,. , ICarlsrnhe, Cer... '7okrmrtnl. Cltrut. 4;. 308'-15(195i1):i - . ch,lfann, fi.:A.44, u819i.-The tnas. u'at.r absorptio)r .. :of pectin dried aR'`u5° i. 60:70?n att room. temp. Pectin dried at.110° absorbsonly 30-41$; 11,0. b'ectic.acid ob- tShred.by sapom . hxss the cnuc watcr absorption as.Um- 's original pectin. Theswelling of lxctiit incrcases.with1u- ,r creasingdegree of: esterificatimt„tr•itfl: iacrcasingntolg wt..,, and tcith deereasingash content. Apple pcctiir swells. 'more than hect pcctin' which is attributed to the higlror MeO contentt of. the former. The swelliiig off raw ma- ~ . terials. contg.. peetin. (klcsugaredd beet pufp and applh. ~ residues)') increases with iirerensing temp.. The smelling, j of'f beet pulp is promoted byy acids andl incrrascsvitb io-i eteasing conen. of acid. At pp[ T 2; f-I(ll and H,SO., .~ show am enttally strong effect. Withh formic, acetic,.ond, rprupionic acids the stcelling, decreases in the order named.. ~ The difference inYhe swclliiig. of: various beet pulpsis at-. . tributed too the difference in the nmL wt.. of the pectinsj , - thev contain.. - J. R. Atill ~11 HERRMANN, J.; GROSSMANiJ;. H.G. Uber den Einfluss von Pektin auf den L-Ascorbins9ure-Abbau. (Effect't of pectin on ' the:L-aseorbit aeid!d'egradation.). Pharm. Zent. - 101(1!2)c743-8, Dec. 1962. graphs, tables. ' (German)! . R.S1 P48' 142]'. ~ ; HIND, J. DL; SELIGMAN, R. B. ' 7 ~J f3,~,r ~> Method of preparing a reconstituted.tobacco sheet Jx' ~ 4D / 'employing a pectin adh.esive. U. S. Pat. Speo. No:. 9„411,515.to Phlhp Morrlsincorporated. pffic. Gaz. U. S. Pat. Office 856(3).:779, Nov. 19„ 1968. TN:s disclosure relates to a process for producing a binder , totnposition~ for use in the mannfacture of reconstituted tobacco. , Tliebinder is made from tobacco plant parts..and involues the _ _ose of the naturally occurring tobacco pectins, which are ob:- tafned by a process in which an alkali metal phosphate ts' em- plpyed to tbeat the tobacco p7ant' parts.The treatment involves the destruction of the alkaline earth metal cross-links of the tobacco pectins, the release of the resulting'tobacco pectins by li >t,washtng action and't}ie depositing of the released tobacco pectins on the treated plant parts. (Abstract) sT5 ~850R7b Pectinbinder' foi reconstitutedl tobacensheet: ~~~in~.. John D.; Srlignorn:, liobert' 11. (hl'orris, Philip, Inc.) ~. 3i420,241 (Cl. 131-Lf0), 117Ja.n. 1069, Appl. 28 Apr 1007; ' 10'pp. Divisiou of U'.S Ji':it,541. Ametliod for producing biuder compns..from. tobacco plaut pnrts fur use in the manufac:- tlure 8f tobacco sheet is describcd.d whcrciit the tobncco.o plant : parts are treated.with anN14,orthoplmsphnte.sulo. which de- stroys the crosslinks of the tobaccoo pcctiirs thus rcleasingg these pectins for use as the bindcr for thctrcated plhnt, partss in the final sheet:, In an exmnplc, (Iv114),1'.t['OI (9.25) .was.adrled with stirringg to, a mixt. of ground liriatit tobacco stcros,(143 ib.)') in 1W (148 g31 ) Mixing was: continued'd for one hr. (10a°R:) tlo~yield a gcl hkomiut'.. (viscosity I(;,.AMFcp. and sohds.content 8.05%) which was used as a binderr in, making reconstituted tobacco sheet. R. A. Nelson
Page 23: fiw68c00
____1 silver 8rai , co Ieaq I + S rr leyt. er~~ t}le nohn.r. '~1 nsiderty ~ ~SA4,19j3) )Uld not )k y's '-af sectioay re poly,,,e more Q, tender-ley. aolGq, but. 1: be morG ; . e . removed of the ap, amount of ztin i¢ tye-an in: the ~dc`umm bY... 2; Ej had ' r9eafl (gt, ma11 and strengtb, Iroaide to le diBBr- ce lose a ig,: c7run de. means of )' was not F t71e ]eaf acement, ntitative d tender the eat- tdant iu se, iron„ re more ial'. leaf:. t}IaL,in, e5l with a Cbain ). Logl• n would t more ther or ier IeaE' :al'cium Il these FIG..I.-Preparations from.normal (A, C, E)',andtendet (Bi D, F)'.tobacco ]eavesj X430L Separations (A, B), cross-sections(C,. D),, and locatiom of calcium: (E, F). . - TABLE I . ` QUANTITATIVE ANALVSrS OF FERMENTED TOBACCO LEAVES USED IN THIS STUDY; AVERAGES OFFIVE LEAVES LrA: xns %- C. i Me' 1 Puvxuae nvr ~can P Fe Z. Ma PPM a a. 3.58 T 2.70 1.26 0 IS 0.011 0.080 0.073. 0.021 0.054 11 58 cndcr...,,.,.. 4.70 2.96 1.35 0.26 0.069 0.243 0.250 0.042 0.0W 11 109,
Page 24: fiw68c00
33; (i93~~ c. ,o. s~; (19s~ .. ' 99587d Pectic substances and pectmolytit: enzymes. Y2~ , t rt \4' (Dep. Indl h4rcrobioL, Uhiv, Colt. ; Nard 0: P hf ^ ~ . , . . . Irc.).. Prmress Tiorlrrnr.. 1992 7(7),. 13 17 (Iing),•. ublm iC . -A..review deafingu•.itlc pectin and.mainlg witlu the use ofpec- •` li'noiyticc enzymess for food pcocessing„ retting.t of plant fibres,, and wood preservation.. 59~.refs.~. ~ . - ,i~ ~~ Theeonten@of'.peotinsintobacco. Yo.O-f tniir,.vtuG.I:Ktrgtvnrvov,, Ukinin: , skiiPhanr.Zhan.4,Tcch,1!t.,:37-4J(102U):; of.-C-T. 24,-16u-Nanji, 1'aton~and Ling' (C.. A. 19, 2327) showed that thrpectibs (pt•ctinogcn,, pectinic acid) consistt ofa six- -memberediriug; formed 6y climination of Gtnolk: of Wntcr froar-1 mcls. of galacttmicscid, . I mol.of.ambinose.and l.moi.ofgalawtose. Asgalacturicaeidis<Iccompd.byHCCinto . furfurat and CO., the.pectin content can be evaluated by multiplying,tlie C0: by 5.66 with a correclion of 0.15% for the C,O, formed during the rcaction.front other sources. In samplesof.Siaikop. Kuban.andl Suklium tobaccos thrpcctinic acid.varicd from 13: 41 to 20.72%, the lower gradesshowiag higher pectin content. Ii. BtEtooss ~ FThe pectic acid and methanol contents of Russian tobacco. G. Gnnnc Aau G. Ktrntcxoa. Biachem~-Z:212„337 16(1929)-The pectic acid content of-tallacco,is high (1t3-20oJo) and in cigaret tobacca.ft.is higixr the poorer thG qualih'- ru non- fermented tobaccothe MeOll is.iit tfte.form of a.dimethylcster; after fermentation of a mono;ncthyl ester ofpectic acid, the Eli:Oti,cotrtcnt is~.0.9i5c/a,.and the ratio lie- ' tween pcctic acid and SScOHH serves as a means to det. the degree.of fermentation. . The LfeOAl is.5.5-614%, of the pectic acid, and.2L9-3:°-% . in the fermented tobacco. In.eigar tobacco the.3lcOH ratio,topeetie acid is1.2-2:6%;. and in pipe tobaccoonly ~0.4-0.ij`o.. The bieOHi content of. various Russian tobaccos is.pracflcally the same - as that.of tobacco from.otkicrregions: S.1NoxcULrs~ ' Swelling of.pectlns. T: S. Garorienkos. Colloid' J. (II. S..SL R'..),4, ti41-5(1933),- rom titc.pec[iir of bcet- rroot protopcctin wercisolatcd hydratopectiny Ca TIgg saIt. . of pcctic a6d and araban. Their swelling and Acatss of'swelling in several H,O-EtOH mixts, werc detd. The heat of soht. iit water of araban in various stages of swell- ing. eass measured alsop.; itt becomes immeasurably small - when araban has taken up 11 HtOfor each free O1-I gronp. : . . .: . J.. J. tiikermnn ~,, ffuormrthency. 3-mctliytpyrene,. beuzopyrency, 3,4-benzupyrene,, 1.2-bcuzanthnrccnc„ 1,2- antlmnthrene;i andl curn-' ~ .- nene w,u'e detd. in the decompn. pr.xlncts. The qtmntitiCs ~ loundlwcrc.uutclf greater than werefnuud in tdte snmke of equivaleut amts- of tobacco. LtspoeicQly large qunonitics ~ of tluorene wereformed.during decompa. of lignin. ~ Ib,. K. llfeishurger ~ ~ ~ Thoemal decamposi[iam of somco tobacco eonstituents. J.A. S. Gill/crL and'A. j'.Lindscy (Sir Jn1un Cass Cnlf., . Z:ondmo).~lrrl. J: Car¢er tl, 3U8-402(I7:)7).-The major eoustitnentss of cured'' to8.icco(cellulrsq lignin„ peotin, stnrch; sucrose, glucvse, fructose, nr3lic acid, citric aci(4 - and oxalic acid): were subjectedd tno thernud d'ccompn. at Gii0° iwthc.absnrcc of air.. Thr.polycyclic :vomatic hydru- cnrbonsaccnnplSthylenc,.4{uoreuc, anthnccnc, pyrenc,
Page 25: fiw68c00
ABSTRACTS Correlation of'.thecontentsof..pectic acid and niethanol for the quality of todacco.. Shihji Kanahmn. J, qtir, G7acm. Soc, Japan. 13„-il''-1-.i3(1!l77).=~ i i1rc tnbacco Ir.tves - ;eoutaiucdarr:w.ofI5.30-1Zt1%,Sofpecticacidandll',{1. ;.U.90P/o% of 1f,ct4ll_ 17ie ur,dCr leaves wrrc richer ill pc<tic ~. j;acid'than.theupperon:s,whilciP.wastllercva•rsewitlrth¢ --_bfoOli.cnnletr.t. Tbelhaves richer inpecticncidruayhe supposedto be infuior in quality'• Y..Kihara ~ Emulsifying; gelling„and'dispcrsing agents anditheiiuse. . K.,K a t ~el~lc ~. Fleud. AroBisleu-Zlg. 5, 10-11(1950); CLeur.. .- T•enlr: 1552„ 1711.-Themost important natural'l and some ' synthetic emulsif}-ing,., gelling. and dispersing agents for - cheru: tcch. and cosumtic pruduets are rev.iewed'.. The fol- lowingare treated'individually as.to rncthodsof production„-- ~phys. propetlies,.soly.,.andispecial uses: agar agar, carra-; geeny gelatin, gum arabic, carob-bcan tlour„ colloidal silicic „acid, pectin„ tragncantlt, and.tylosed bL G'. Moore ~ ° The peotic substwees in tobacco. S. KaseiratTti Stnte. Tnst:.'1'obaccoIrivestiga- tions (U. S.. S. R.), T3u11. 81, 5.5-9(1931).- nof vaeiou-,s samples off tobacco: showw that tLe content of pectic substances varies from IT. to 10%. , Tbe.high-grade.tobacco. . contttiits less pectic substances: The fermentation process has noeG'ect on the lpec-~ ti0 content Jy S, JoFPS. 0 °0' 4o438tv Rheotogicat study of' some hydrogels. Keresztes,. Anna; Berzsenyil,:M. (Yharm: Technol.Inst., Med. Uhrv. . zcgce„ Stegcdy, Hung.).. Yhurnaaie. 1969, Y4(4);. v?0 2(Ger). Coul, parative dreological studies of pectin (1) Na alginate (I1),.and - rNa Cll3:-ceilulose: (III), gels were carried out. The latter hadthe.best propert6es. Tbe III gels: were plastic and tMixotropic. The Hosvw boundary and thiieotropy were relatively low., During: the.prepn.,the temp., should not exceed G0°.. In contrast to Mecellhlosegels,e it was unnecessary to work at low tentps. for III during swelling. Glycerol increased the viscosity of all the gels, esp. i and III. BiYJG ~ ~ ti863zInleraution of. cntionswitlis freee caohoxyl', . groups of pectin.. oH It.; F.urda„ I. (Slovak Acnd. Sri.,, Bratiaava, Ckech,).. ' em. .Soc, (Gondnn).,S'pec. Fuhl. 19G8, \o:.23, 283-91 (6ng)., 'Phesrrengt.h of'the bnndd f rmed between Car' andl pec- tin.(1). was studied insolns. and'd suspensions of Ca pectinate by the detn...of llle stability const. Ainftlte corresponding Caa cum- FIhxx and the.selectivity coclL of Ca'tand IC' exchange. Thesenctions were related to lhedeame of esterificationof I and to . the nv, distance between COOkl:groups.. With increasing degree (d) of acetyl'ation,l2 ofpecl"uc acid (It = 3.8, for d.. - 0) decreases; vrhereas.withpectinic acid (R. ~ 2:5 for d= 0) it is almost.inde- pendent of d'. The distribution of free.COOH1 gmups was studied ~ duringpartial deaslerificaliom ot' pectinn by pectinesterase and by ~ . KOhI. The latter results in random du.sterdnntiun but the en- zyme eau.es. block deesterificntinn. For alk do-treoted 1, log R ~' decreasedlinearly with d, but log~ R fnr thee enzyme prepn. 1e G-"`44.{fff777- marned const between 0'.4 e d < 0.81and decreased sharply as d. • approaches 1. Cho.distributimt pmtern.of COOl1';;roups in.l es-,~ teriGed with2M methanolieHjSO. was,nlso st.udicd. O .. .. . ... . . . .. . . .. . F. Franks ~
Page 26: fiw68c00
1 4482 Kohn, F charge of the molecule is. not unantbiguously determined by the:esterification.degr"Due to the cross-linkage of macromolecules; some carbozyl groups, which. belong to two or more. pectin molecules,, may get close to each other and thus form sit'ea of'a higher d'ensity of electric charge. The binding of divalent cations is in such a case firmer than could be expected on the basis of the esterifieation degree of'tge preparation. On the,otlher hand, as we.have shown above, theselectivity coeMicient Kr in pectin so3ution strongly increases with increasing density of the electric charge of the mole, cule. The resuCtsare in goodl agreement with the well-known.finding.that the coagttla;. tion of pectin due to:calcium ions occurs the sooner the lower the esterification degree of pectin. Fto, 4'" - . . - . . ' Dependenceof Stability Constant K I and SelectivityCoefBcient KK' 2 on 1NeamDistance:of Free Carboxyl'Groups: Y : . " Y is the mean distanceof free earboxyl groupstxpressed by the.mudtiple..of the distanabctwee¢ cacboxyl groupss of two adjacent D-galacturonicacidc units for.r which Y= 1.. Thee distribution pattern of freel carboxyl groups in the pectin molecule le (-O-free carboxyl', group, -0- earboxyl groupscsterifiedbymetfianol):. • ; . A, -o-o-o-o-o- `~E B-o O-o-. o-o.-o-.- F -0-• •-.-0 •-.-.- '- , •, -, t . .... . <,..; .. ::. . _ . C. -o o-.-o .. G--o-e. .-.-o . o-.-.-~-~- - . .._. ,_._ . ~ .. H, .L . ;. , .. _._ .... . ... _-..__. .. .. _. ~ ~-- JpteractiU: j' ~~- ~ 3tabE1 pistri, . $videncc ! solution ~ carbozyl showing when the them cat Simila I(c.' of t distance sider in projecti'c We expr adjacent The c eoefficie in Fig.. I which e: course c * of the s ' for eigh 1 groups : where c rying a and 1og Itis~ the exa ~ amd th< of free. papers + pattern Wt nr 1. WaI' 2. Wei* ~ 3. Zait 4 De u . ~ S. IDeu ~ Cb¢aaunCzecBoila..ebem.Commun.[VOL72/(1%i) N.. ,ea¢e,cdoo ~ ~. (~ ~
Page 27: fiw68c00
4480 Kol1_n. Fu'. given in Table 1V were deteemined in systems in which the equivalent fraction of Ca"-ions in the sohttion was mostly low (X& < 0-3). The dependence of the selectivity of ion.exchange on. the composition of the solution is not yet apparent in this relatively narrow interval of Xc; values. As evidenced by the results given in Table IV we are justified to calculate:the.tnean val'ueaof the selectivity coefficient, KK 'Gom all measurements regardless of the ionic strength of the solution, (µ 0,01 to. 0•15). The results of the calculation are presented im Table V. The error of the mean value oflog.KK°'is verylow, approximately ±0-02 to±0'r04, imview of the highh numberof individual measurements. The dependence of the mean values of the selectivity coefficient KK' on the esterifica- tion degree of pectin is described' in Fig, 3. The functiom log K' = f(E) follows a course similar to that of the dependence of the logarithm of the stability constant K on the esterification degree (Fig. 2). The affinity of Cax*-ions to pectin stYongly decreases with increasing, esterification degree„ z:e, withh increasing average distance between, free carboxyl groups from each other in the. macromolecule. Whem the esterification degree is around 80%, Le. when only every fifth uronic acid unit is carryingg a free carboxylgroup; the affinity of Ca2+- and: K+'-ionsto-COO- groupss is identical (log KK"= 0;, K#"= 1). When the esterification degree exceeds 80"/,, the K*-ions are preferentially bound to carboxyllgroups. As we have alieady shown, unlike the K*-ions the CO`-ions always interact TAeLe.V - Mean \!atues.of Selectivity Coefficient KK• of Exeriangeof Ca2+-and K'-Ionsin Peetin.inDa pcnd'enoeonffsterification.DegreeE_ Sample No , E Number of measurements 2' 5:•6 18. 3 26-3 17 13 26-3 18' 12 27~1 17 4 29•3 20: 10 29-8 16I 9. 38•6 16: 8 49-7 9 1. 58-0 15 11 66,0 17 5' - 77•3 13 6' 89-8 9 7 95•3 6 log, Kx Interaction with two carboxyl on Ca''"- groups M of ion ex with a lit molecule cations, The va venience series of the mole is, of gea- preparati in the mo Due1' a a pectin 1 Contrary im, pectin tion degr permit tts exchange 2•19f.0-03 1•37f,0-02 _ 1•51 f 001 1-48.f 0•02 1-20:f 0-04 1•40: f 0102 1 0-93f 001 . 0-61 f 0:02 0-46'f 0-02 ~ Fro:3 0-45 f 0-03 - 3 Dependen ' . 0-04 f 0-02 . Esteri5cal -023f 0-02 ' Origin -0-35 f 004 ~ Qsugarb ~ Q ColkNnn C2xho.W.. Cbem Cnmmvy (NOL 321.C1%7t. .. ~ Cea.Nae C ` ~ IGl ~ Q
Page 28: fiw68c00
Kotin, Fiorda K t, m ions in the solu. the solution i:e., the ecarboxyl groups, [Capf ioeiated complex, and K 'ity C6nstant K of Cal. , ,sterification Degree.af xctia 0 apple Il0 applel$ 6 citrus I, ocitrus CI.O sum ae bect Ionic strength p f; g 5'~6, 26•3„ 77•3„ and W8%' (µ = 0-01) is shown in Fig. 1. Similar results yielded the rcmaining measurements. Both.the linear course of the function and the experi- ptentally confirmed value of n= 1 indicate that the interaction of Cas+-ions with fsee carboxyli groups of pectin coincide exactly with the law of multipl'e equilibria regardless of the density of the electric charge in the molecule. The law is also valid for pectin esterified to such a high degree (E = 89-8%) that every tenth unit.of uronic acid' is'carry,ing a free carboxyl group. The determined stability constant K is. there- fore an intrinsic constant.. The results of the measurement are summarized in Table II! and Fig. 2. With decreasing, degree of'esterificatflon, i.e. with increasing densitly of the electric charge in the molecule the stability constant: K of calcium pectinate strongly increases. This increase isa function very nearr to logarithmic dependence... The: stability con« - lnteractiom of Calciumand Rotassium Ions. with CarfioxyL GroupsoCRcctia. 4475 Ash contained in pectin samples does not affect the binding of Caz`-ions to pectin4. The stability'constant was examined first with the basic series' of samples of'apple pactim I with statistical, distribution of free carboxyl groups albng the molecule: -fhe course of the funetion 11r = f(1f [Ca=']) for pectin with an.esterification degree stant K considerably decreaseswith increasing ionic strength of the soltttion between u= 0+01 and 0415.. This' decrease of the K-valltes cannot be accounted for merely by the change of the activity coefficient of Ca2+-ions with ionic strength but it indicates that art ion-exchange equilibrium at the carlioxyll groups of pectin is in- volvedi The course of functiomlog K- f(E)I at ionic strength µ= 0-01 and 0. 02 is.shown in Fig. 2. At higher ionic strengths (0•05, 040, and 0-15)1 similar curves parallel to.curves fI and 2'are obtained, they are, however, shifted toward lower IogK-values. The determinationi of the statiility constant, K was carried out in pectin, of dCft ferent provenience (samples 8-13). All the found K-values lie very close the curves obtained for the basic series of samples with statistical distribution of free carboxyl groups along the pectin.molecule (Fig..2). The highest deviation was found for citrus pectin II (E - 66%) at a higher ionicstrength of the solution (Table II). This devia- tion indicates a less, regular arrangement. of free carboxyl groups in the molecule. Om the basis of the obtained results we arc justified to conclude that the described fltnctionlog.K=f(E) is'ofgeneral'validityregardless ofthe.origin of pectin (apple, wild apple,., citrus, sunflower,, sugar beet), of the polyuronidecontent of the.preparat- ion (68-93%), of' its molecular weight (29:000!-109000)', and of the character of neutral saccharidc units (n-Gal; L-Rha, n-Olc, D-Xyl, L-Ara) bound in the mole- .. . . . . ,,N~ ned in pectin samples de. :mented by data oni molar ~ Irolysis of the preparation. ~ ain of'the pectin molecul re en.shown' for the original cule of peetin or in accompanying polysaccharides9. edbminantly bound in the ', aride in wild-apple pectin ;. _ the phytoglycogen type" '' rw. m~ ummao= rvat sar osm I II e,nI ezwuwI>,: csm.. r~: rvot s:r oesn . I I
Page 29: fiw68c00
ABSTR AGTS Cl. ~ aG; ~l P3~~ / Carbohydratesinreadilydispersiblefornt.. ArtSmrl.A4 Jr., and'.ILCS.'~isF. Giunetc (to LI,S'. Dcpf. of Agriculturc). O.S. d,9(rt,722(Cll 150-49), No. 201, 1962,. Appl. jan.11, ]060; 5 1,11. , DYy,porotrs, and'.dispersible carbohydrates were prcpdL" .. by amrerthtgan art. earboliydrateiuto a stable foam~ by incur- ,I+rtaliug:a gas and a minor proportion of a fo:un stabilizer. The luarn tvas:spread in.a thin layer atatmt presure,, then contacted ' uilha, hot gas at temps. between 120"' and' '220°F.. until dry. Thus, into 1000 parts of aq. 5% citrus pectin ivass incorpomtcd'. -(1,.5 partof dried egg albunniit.. The mii:t. tras foamcd.hy whip. ~ ping witltan egg beater. A..foam having a d. o60s# g./rul..ccas .-pndtmed;, it was spreadl in a layer 1/S in. thickon a. belt.of a: dryer. The foane was conducted through a.dry•er and contacted. .. eillrhotair at 170°F. for 50 mih. The dried product wns passed.. .. tluough, a 2(1-n}csh.scrccn tofonn.porous particlu which urre- instantiy' dispersedd ouSpoort stirring in cold mater.. Sucrose aith.pectiu, corn siiup,.honey, and molasscstrcre.converted to. . diy„ porous products by the process. For prrpg. the foam6 N„ . CUi, NOz, He, propane, butane,, isobutane, dichlorodi0uoro-- . . methano„ tricl'rlorommtoflhorometlmne, or trillrmromonocldoroe methane may be used. The loamstabilizer maybe 0:1-l0eJo:by't , ut„of tric snlids of the solit. Foam.stabilizers may beiatty acid. . "manucsters of: inner ethers of hexitols, condensation products of ' vlby9ene oxide and.sorbitan„condensatiou products o0 etlty9tue oaide and; long chain carboxy3ic acids, condensvtion products of' - rlhyl<neoxides.trithlong cl.airi aliphatiralcs., mono- or diesters_ i uC sucrose and fatty acids, nronoglycerides of7tiglier fatty acids, ~ ullsorhigher'fat2y acids, higher alkyl sulfatcs~, higher'alkyf . . +ulfuuates; alGylaryl.sulfonates, alkyl estcrs:of'sulfosucciitir.acid,. •+ulfunated or.sulfated fatty acid esters'or amides; condensation. puducts of e0llylhne oxide and alkyl. pireuols and salts of bile ' ucids. A process flow shect was given. S: P. ti4arino /R- ~41862mPreservation of food products., .14h11 r Fredrik Louis FE. 14emande 2,p71,988 (CI. A23I)y 29 ..~)7d, A`onv: APPL 5i/71/09,. 22 I llcc 1969; . 15.pp. Food prodhcls:arc aulo- slerilizedl hy mixingthe.0ood witFi one.ore more thickening agents - hav.ing:negg charged'd mols., and liolding.thet¢eatcd products at <10'. The additives ane added tothc food'product.as a 2-5%. , aq, soln..previouslyheated to 50~80°.Thus, 250 g sugarwas added to a fruit salad contg. 500 g melonn cubcs,. 500O g orange -slices, 500 g apple etthes and, 1 1. pineapplre juice. \Vhenn the sugar was dissolved'.,.2a0. g off a blocking,aqeut (250 g, pectin and''?5' ggg carrageenan i6t, 1 1. tvater),, previously lieated to70°, was stirred in, andd the product packaged in plaetiror At bags:and'stored at.2-5:°.. ,._ Fr. F'. Herreygers .4 s "- The pectin ofltobacco. QAr.r:.?{ctr.•rxcAnv,\iwx:5cuisnea: Bznrltem. Z. 243, 461-71(1931).-F_vidence is pnesentet~TT1ie presence of true pectin in the tobacco. . ale.,- Theranexts: were frccd! front varinus po{yglucide arhttixte.. by memrs of, 70% the residue being dissolved in hot nater and.acpptdl wiih alc. This rnaterial is:sliown to be a pecmte of Ca and Dlg~ the pectic acid being obtained by ale. pptn. of an arl. solll. rttadeaeid rvith. HCI. The latter consists of14.5%.ash,.4.5r^/,y MeOlf, 5% AKOti,. 60% .galactttronieacidand5°jopentose;.thus.accounting.for79ojo.ofitsenmpu nllich.isi similar to that ofFlax pectin. - 5. h4oactn.ts ~"
Page 30: fiw68c00
. AssTRncrs • /f . 755SSa. Thennodynamicsof water binding by pectin. sub- [tances.. Kov denko S. L• Kurilenke O. D. (d<lev. , TeV'chnol. liis(. Pishci.. . o ~£iev, USSt'0). Ie . Nj-ssk. UckuL Za:ad., Fldirk. 1'eklnmf. 1458„ (B),. 41-1fi: (12uss). Water biirding, was. N'udicttl' in variauspcctin substraicc•s; ilrn all cases H bonding u•asinvolved. ; The arnt. of bomrd water in pectins from becls tvaslarger than •in the pectins from apples. For each macromol. Imk.nf apple pcrtiits 3 mols..of'Hx0'. were bound, while -0 mo13. ofi ` 1160'were bmmd in the case of beet pcctiits. Entropy curves ` werc ctlaracterizedd by the presence ofminima whiclf indicate dct•elopment; of uronomol:. laycrsof 'HxQ with a better oreleredi . f"rmulion. &!. Rodnamk Pectin coating for cheese. rrila L. P. Krizkozskv. .Dutch 71,073, . Oct. 15, 1952. To maCe aa pccl"on coating, whichadlures well to the chcese.,.pcctin is used having a. ,,degrceof csteriGcation of at most 40• and consequcntly t1iee methoxyl groups are divided out forr the greater part. , Probably the Ca.compdsa of'thecheese combine with tiie. : pectin:. To apply the coating, the choese.isC humcrsed'd in.a • cold 5-10% soln.of tlm,tectia preprr.or thesolh...is spr^ad - or sprayed upon.the cheese. The cheese isthen'air-dried. A preservative may be addedi tothe solh. Prefembly ben. _¢oic:acid is added' before dissolving'tlre pectin.prepn. by boi1- ing•,as.the pectin then is decampdi..further: N'. E.. N., , ox.. /.~.-a•T 100565z Polymer;., crosslin~ked firorm malicpecti'n and its " cation-substituted forms, studiedby'an iir-speotroscopic. method. ~Kurilenk , 0. D:; Rahulyak, Ya. G. (Inst. Kofloidu. Khim. Khrm- 7o(1y, Kiev, USSR). Ukr: Khim: Zh: (Russ. Ea..) ~ 1974„ 40(I1)! 1.1&3-7(Russ). The crosslinking of apple pectin' . (L)'[9000-69-51. with epichlorohydrin (ll) [1a16-89-8] in elk..~ . . sufn. gave an ion exchange resin: ihsol.,in water or. HCII soln. The: . ~ iPspectra of the resin~showed that the OH gronpsof I reacted ' wfth the epoxy groupsand'CI atnmsof 11 '. givingthe cros;links. - The H±iormof the resin could bee converted diFectlyto theCae ;. ;-Cd?q, or Srr+ forms. The prepn4 of the K•; Na•, or bigs+ resin forms required the treatment off resim withNfIsCl and NHAH soins.. prior to the treatment withh the metall salt solns.; this _ decreased the'hydrolysis,of the.resin. / ~ 146S19t Use of pectin in food processing, Lnck,ra E'. (II..P..Bulmer f td., Iingl ) raod /'rocees. hvl. 1I71 dl(40&)', 47• 49, 51 (d nG) The r.hevnntry, extn „andntanuf. of.. cnrns pectiux.is descnbed. The uses uf low aud higln methoxyl gradhs'. ~ of pectin inn foorlss is oullincdL No refi. J. Thomas ~ ~ ~ ~ Pectic acid and methanol in tobacco leaves produced fm Japan. I. Snacin hGc[rrnn. J: dfr. Clrem. Soc.,Japan:7, 393-7(1931!).=1'hc.contents ofBleOII and ' IP~-"~zc7d fn thrlcavessve.re richer ih the upper lcaves• and max. inn thoe top Icaves• in tshiclr these contents were;,resp:, 0.fih-0.70% and 0.&1-7A% of'thedry mattcr. The ratio of hfcOll topectrc aeid is.911-m,0':300. hdcOll.ntaybe in thefornu of trimetbyl . estcrinthelcaves. Tlrnquantityof'b1eOll,wascstd..by.theBellenberg:mctlrod, and -pectir,acid, by'tliedetn.,ofcarboxl•lgroup, 7f.Kinnaw~
Page 31: fiw68c00
A1lSTRA GTS reatment.oftobacco., HimsG.Gri~ (!flans.C:,Grunim ... aud'~.CcurK Gkmnvald, invcutors)., 6cr. 944;l5I,.Sept..1o, -. 19'uG(CL SDc,l). In a process for wot'khng'up tobacco andlobccowastcsfor rccoc.cryoNy the.flavoriugsuLvlonces;e the -atartingJnalcriul istra•atcd succcssivcfywith a hydruphobic ~ . urg- solvcul (i.g.,. (^•IQH-0:CCI~),. wilh~ II:C, andwith dild. • rnmcral't aeid4: Ths 3 cats are sep<l..into the rlosircd'd frao- ~ ..tions. Yrcfcrablv thoCKII•CCI}cstl:ittcitcrtxith.knv '''~~~`---~~~, alcc to.obtaia an al¢. insol fr.ution conlbhydrocarbons to. "which nmy be..addld otltcr hydrocu~rlaats hav.mg siinilarwno- ~' figuralimis, c:8•, cicosmnc, triacontnue or humnlbgs, mid an - -: a1t,.soL.traction crnrtg. the-0avoring substnuecs;. tvhiehh arc :'tlionn sepd. by frnctiouatinu at,pressuresas Iba as10-0anm. _Thrrenraiudl•rrof.this ]st cwbn,'iqcaLHL with ,11,0, and the . i resultingsoto, scpd. into a fNactiou cousisting of. a mist. of: _! erg. acids aud'into another fractiou eonsisting,of nculral ~ substances, c:g. hydroenrbons. 31tc remainderr of the 2nd ' cxtn. iss tlmmdccompdn by. trcalmc•u.u with dild. acirl4 to- 'jobtain a.residuc wbich.consists cFiicfly of pcclins.and pcntow, -„ cvvs,eiiik•L may bousubas flavoring suhstances.. ' F•E.- - GUAGNINI 0. A. ;; VQ24ESCH}. E. E. ; de R7VEROS„ M.~ IL C. K,, E~ udios sobre 'acidos.hidroxamicos, XI. Microvaloracibn dp : grupos metoxilos en pectinas. (Studies on hydroxamic acids, ' 7C1. Mtierodetermination of . methoxyl, groupsin peotins. ) . Mikrochim. Acta (3):408-14,1961. tables. (Spanish) QI)71' M5 .Thhe method is based on the liberat'don of these groups by saponi- fication, conversion into methyl formate and distillation off the. Iatterinto a receivercontlxining alcoholic hydro:cyiamiae. The methyl formate reacts to give' formhydroxamicc acid!which is de- termined colorimetrically as iron. (III): chelate«.The hydi•olysis.of ~ the pectin is conducted at 1UOoC in a.sealed tube. An aliiquot' of the hydrolysate is brought' into reaction with excess formic acid fha microdistillaion:apparatus. The procedure.issuitable for 1-3mg pectin and requires 2 1/2 hrs for all partial operations. The specificity is sat'i'sfactory, even though.ethoxyl.may inter- fere. The results aree in general inferior to•those of volumetricc methods. The reproducibility was tested on methyl estersand showed a minus error of 2-4%. The smallest amount of inethoxyl which can be determined in, this way is 20pg. :. (From.English.summary)'. 01643. _ . C ~ ~ W GY'UZELEV, L.; GEORGIEV, S.; BUBAROVA, M.. ~ Effect of'some chemicals on the smoking and physical properties of Buigarian oriental tobacco.. Nauch•Tr:, • '. _ Vissh Inst. Khranit. Vkusova, Prom., Plovdiv 13(1):117-28, 1966. (Bulg.) . The compn. of tobaccos and their smoke wass studied before and ' after washing, the leaves with.water. Substances wltich det. the - quality and characteristicss of.specific tobaccos are watersol.' ' The readdn. of water-sol:. carbohydratesrestores the arolmatr ~ iccharacter to theresins.. Nicotine improves the flavor sllight- _ ,1', cellulose,., pectin,, and org.. acidsadverselly afdectflavor, wMilee amino acids have no effect.. After removal'of inor•g. sub- stances by washing the combustibility, and the water content,, are decreased'. (Abstract) Chem. Abstr.. 72(19)!:No. 97421k, May 11, 1970. 14146
Page 32: fiw68c00
c.~? ?~, ("iva3;~ ' Scientific work. att t1ie: Pforzheim Tobacco Instihrte„ Fed-; eraf Republicc of Gerumany: Karl. Sclunid ,(Bundc;nnst.•dt. Tal>,lklorschung, Pfurzhcim,. Ger. . .v_~gr. sci. iidcrm. ~ - taLac, I`•Coagr., Paris-liugcrac 1, 100-11(IO.i3)(I#hh. 1956) , (in. Prench)..-Prcvious rvorkat this institute.and clscwhcrcisrevicwed,i with some appnreutly mcrv data. 'A colori- metric micro:nctbod (ontlincd) was devised which dctcctsI -as.littteas I0;r nicotine (S) and related Idkaloids.i6t dil£crcut. ' 2rts ofthrtobacco plant by the use of CNBr.. S'olonura. - .' lycopersiiuou, 7ltrapa bcRadonna,, and various Dahara spe- : cies:contained apptox. 1I mg. I per 100'g• (dry wt. basis). , . Thre metbodi cannot be applied to to6accoo snokc;, siucee many pyridine dcrivs: give similar colors. The so-crlled. ~ low^-I andI-frce tobaccos contaiu 0.G-0.5% I initially,, but. .' , the I disappcetrss during, fermentation and ctming.. Such ~ finished tobaccos contain mcta-I,.nryosmine„and'.3-pyridyl methyl ketone. Intermediate stnges'cn the formation of. -Uuse conmpd§. from I.are discussed. 93ethods of dctg. I. - in tobacco smukce andd condensates arecousidered. Other . compds. found in the smoke aree discussed. 'Phe pectin . content of thc tobacco plant.is.high (about 1!1 jo urouic acid) but varies with tnetcorological' conditions. The protein cont'ent is dctd. by pptn. or by enzymic inethods. (dis- - ' cussed)',. A procedure of diffcrential' analysis (outlined). ~. indicaths that difit•reut vanietiesof tobacco. (named) may be divided into 2tnain groups, depcndingupon whethcr I.. -or nor-I is the predominantt all:aloid.. The Karl FischerimeUiod is the most satisfactory means ofdctg:f water in - -~tobrcco: In the fermentation of tobacco, not only COy but '. also N is givem oQ.. ' W. ClTobic 9055(5n Conditions for gellingg slightly methylated pectfns., , voxr-Lcwayovsl!a_ Barbara; Gdziemtickiy Andrzcj~; ZBzicn- nieka,. anuta (%akl. Technol. I'rzetworow-0wvocowych \Warzy ! wnych,.Inst.. I"raeam. Ferment., Cltarsaw, Pot.).. Pr. IruY. I.a6.. , Badaw.. Przm.. Spos7w. 1972, 22(4), 483-50? (Pol).. Detn. of' ~ gel.strength by ntcanss of arirlgelimetnr makes the deeciiption of'~ - i gel.l forming, properties of lowmethosyl pectin prepns. possible. , The elfects of Lhc amt. ofinet'hozygroups, the pectin concnn i~n the f ge1i. Ca contcnt„and pH were detd. Peetins contg.. 5.3-7.4%% i tnethoxy groups'gave the best gels. Pectins wiO 1.P(-i.44Jo ' methoxy groups required 10-30' rng Ca/g, pectitt. Optimal pH! I is 39. Anaa H.. RotIl'er ~ ~ 44S'!2p Bchavior of pectin substances~s in aqueous soEutions - studied by a light scattering method. Sorochan t D;: Dzi= zenko, A. ILr Ovotlov, Yu. S. (Inst. Bwl Mhchcstv VIa= divostok, USSR)'.. Khim. Prir. Socdirs 1972, g(1), 12 14 (Ress). Five different.~ectin prepns:.were studiedi by light scattering at , eormns. of 10~ 2 x 30~' g/ml to,det. the effect of temp: or ad= ditives on the av,. mol, wt.. High~mol.-wt: aggregates(av: 3.0 x 10^s daltonsfor zosterin at'. 20%') w•eredisassocd_ to smaller mols. (10'-10T daltuns) by raising the temp. of the aq, soins. to 85', or - byadding NaCl, NH.OH, urea, arTwcen 20: N: A. Scarkovsky. ,
Page 33: fiw68c00
/D' or Cnicium pectinate. P... Ffaas-ScFi il.+. (Tech; ITitelachule,.. Knrlsrulte, Ocnnany). ,1' a •rn;uo .,Chcua.7y 1'40-7(.1051Q.- Thestoichiometrie:ch:.racteruf Ca pcetinate was shown by . ~. addingfrom 10 to.4110 m1. of 1.5N CnCh (R expts.) to~ 400-. mli. samples of 0.7fi^/a apple pectin.soln.. (47.33%% estcri6ed)i and adjusting.theutixts.g to pII fi.5; the amis. of.Ga inthepptsl varied only fmnt 4132 to.4.-18^J (corresponding to.2.11 andi?.24nmq..Ca/g.). Aliqpots.of the pectin saln., after 'saponificatiomin weaklyalky soht..for 2; 5, 8, and 12 tnin.,.. ° bound 2:70, 2:75, 3:17„and 3.50 me0. Ca/g.. When thepfi. ~ is adjustcd to 2.5 the ttnsaponi6cd.pcctin bindsmtl,v1.46. -: me/. Ca/g. Pectius of varying, dvgrecs off esterification , wereprepde bvthr action oF toutato pectase (IIi11F, eLl al., ~ C.A. 39; 4RJ'0?). The degree o0 esteritication:. (%), Ca. ~'tontent. (%) of xhe prodlrcts snbseqncnti,v formed by reac- tiom with CaCI} at.pH 5~, aud the solubilitics at °0 .50aud' -80°(g./100 ml. Hy0) were, resp.: 56.80, 3.00; 0.280,.. -`-0.305, 0.493;, 32.60,.4.58,.0.021, 0.030,.0.105; 15.30„5.78,. .. 0.001, 0'.080, 0.110; 0.20, 6~A8, 0:.O01i,.0.00a, 0.034 (all. ; values for.productswtth mt av. mol. wt. of 90,000)~. Similar datlaforsamples varyiitg' ittl mol. ret. show~ that soly.. de-1 ereases with increasing mol. wt. J. P. IFanetiy r ' Water-resistant reconstituted tobacco pmduct: * Howard M. ' H It r and Joseph. V.. Ifiure (to. Artucrican Machine &. Youndry' £ 1PS 31062 ' C 1 ( 12~ I 31 1 O .(. . - . 71, . , et.&,1qb$APp3..May21• . 1962; 3pp: Finely divided tobaceo-is Conrbived with 1~3I)^Ja ..'(finished product wt.), of HsO-sol'. polysaccharide adhcsive and one or. more wet strength; agents. polysaccharide adhesives. , include.(1) ecllulose ethers, e.g. Na.earbosyntethyr cellulose, - • hydvoxyethyl cellulose, and elhylhydtusyethyll cellulose• (2Y_. _/ ..; galactomannan materials, eg. lucust hcaagum,.gtmnguny,an 1'd (3) Dolyur)nides,, e.g. pectins and alginates.. Forumldcliyde. ~ dcrivs, of. primary and'd secoodaryy amines orr amidcs and of theiilower alkyl dhrivs. areprcferrede as wet strength agents, csp, - trimethyl, ether (I)iof Orinxlhylolmclamine'.andidimethylblurea. The userateis s-50%of gum wtrThe addi,. of; . a mincral acidc before the drying process increases rate.of wet strengtli devclop-ment. To a.dispersion of I kg. guar gum powdcr in 49 kg..11,0' . is added' 5oPg. 10% aQ..H3PO, and 2.kg. IO% a91, I. Fiually..2', kg. of cigar tbbacco dust't ground to pass a screen with 0.25mm. ._.~fopenings is mixedi. to forne a paste and this paste shaped into, _P.tobacco products33n, thecenventional way. S..O_ Jones % ynENS:Sf, V.; 8O.41K, di.; ZITKO, V.. Zur Bestimmung.des'g nresterungsgrades von Pektin. (beterlaination of thede- ; gree,.of pectinesterification.). Nahrung 7(4.):321-5; 1963.8paph,. table. (German) TX341i N27 4 rapidifnethod for the determination of the degree of pectin . rrteriftcation.isdescribed. Thismethodis basedion the deter- _:Inition of the amount of'.pectin-bound CU2+ions before and after .M•esterification. Thevalue.for the esterification degreeils not -.:.flucnced by the presence: of acetyl groups. Thee estimation of . r•t~thano)iwith.chromotropic acid was also used for thee deter- ::.blatlon of the di:greeof pectin esterification.: The gpod con- . „•rdhnce:of the valuesobtained by these nlcthodsandby the titri- .mrlric method suggests that the D-galactose and the L-arabihose,n the pectia molecule may be linkedotherwise'd than by carboxyl rraups. (From.Englishsummary) 17~20_ 00727376
Page 34: fiw68c00
Kohn, Kurda-. ;. 1 0 0 0 0 '0 0 ~ vfl P ' en eV ry • o' m 0 0 -H -l ~O V N M 0 0l 9 M ~ c o +I -H', -H •+ b O fV IV a o 0 ~' c o il' -}{ -H ~' P oD V .-, .. i ~ a ( o L o, %e ~ a e n m ^ i i d cbamun. /Vot vaU9')t i (~tcraction of Calcium andl Potassium Ions' with. Carboxyl Groupsof Pectin 4477 Selectivity Coefftcient'of Ca=+-and'K' Ion-Exchange punstone=°'describesthe exchange' of mono- and divalenC cations in acidic mucopoly- saccharides,by the equation of Rothmund and Kornfeldlt XMo,, _ k ~, [MeIt] a (XM.~)2 ~Mel]Z~~, (3) where X stand's for the equivalent' fractions of the corresponding ions ini the: poly- electrolytephase, whereas CMer]: andl [MeP] designatethe':equivalent.concentration of monovalent eations and divalent cations, respectively, in'the solution.. Constant k is a measure of the affinity of cations toward d the polyelectrolyte,, qisan empiric rsponent.. Theautho'r2°'hasshown that exponent q equals 1 in acidic mucopolysac- charides. Then k~i, _ XMa. [Met]Z (XM.()z UMe"] . Constant kM,;` is called the selectivity coefficient of the exchange of ions Met' -. Met. Itv this way defined selectivity coefficient is often employed for the investigation of exchange equilibria. Thus, e.g., Haug and Smidkrod23-t4 describe with the aid of eqpation (4), the exchange of cations in alginates of different'origin and composition. Contrary to acidic polysaccharides; the. selectivity coefficient kM:° for synthetic ion exchangers is independent of the ionic strength of'the..solution25. Dunstone20 investigating the exchange of Ce'- and Na*-ions in acidic mucopol'ysaccharides (chondroitin-sulfate'A) foundlthat the selectivity coefficient krv; decreased down to'the thirtieth of its value with a drop of ionia strength from 0-52 to'0-013. We reached, a: similar conclusion when evaluating the exchange. of CaZ*- and K'-ions in pectin with the aid of equation: (4)~(Table III). Imspite of all efforts of the author20'the de- pendence of the selpctivity coefficient on. the ionic strength of the solution has not as yet been theoretically explained. It is' obvious, however, that the change of the activity coefficient of cations with ionic strength cannot be the main cause of such geat changes of the selectivity coefficient. The ion exchange can also tie characterized by the selectivity coefficient: in another manner, i:e: by expressing uniformly the cation concentration in the polyelectrolyte phase.and in the solution with the aid of equivalent fractions X(ref.zG) Then KMe» ' ne4n:o) (5) , /- (~Msl)? where indexess pand s designatee equivalentfraetions of cations in thepolyelectrotyte and the solution, respectively. Pa11ee4uu Cuehuduv: C'tiem:,C4mmuu. NoL 33) (1967)
Page 35: fiw68c00
l? lBSTftACPS . The content of pectic acid' and tnethanol, intabaceo : lenves produced in. Japan. Ill. Sichi hf:irhidh. J• rlLr• Ch'tm. Soc. Iapru.9., 11d(}-3(1!Ia3St ~~A. 27, ~ S'IYO(-Tohyccqi lcaccs: . of various varieticscultivatcd •. hndcri thc satuc couditiou wcrc taken. 'fhc cmrtmrts' of ... Juclic acill.and h(c011 wcrc,., rsp., 10-IGc. and 01t-0:01 iu. Pectic aciil'sccmcd to exist in the form of the dimcthyl ,h cster or mmnonmlhyl.cster.. - V. Kihata - i Tlie:contents of pectic aotd and tnethanol intobacco in Japan. II: Saichi hfa._~fli4ih. J'. Agr• Clienv. Snc. J'apurn. 9, 733-7(1933)'; ef. C. A. 25, 4a110.-Cigarcts~~ contam • 9:fr18.8%of' pectic acid and 0.3•4ro:$3oJo.of, ~ fficOH;cignrs 12.9--15.2COof pectic acid and O,OLB-0',036 (7 . of IDCeOH'. . Y. I€ihara ~ ~ 57776f' Pectin:, Its u5e in candy technology. `S9iitifie„IIemard tV. (Iinechtel.llab.,,Skokic, ILL). dYfg.,. Confea-7r, I-, 51(11), 25-32(Png)• A review with 10 refs. on the chemistry / ..of'f pectifi and pcetic substances, andl the a(1 -+ 4}o-galac- turonic acid polymers present in plant tissues, and the use of'. tpeetin [the ble estcrs[ inn candy manuf.. The sources, manufg.. methods; and typesare.discussed, along with jelly componcnts. .aud'.production,and'.anal.mctliods. 10refs.. AdtianF'.Pomes. The mechanism of bardening~ of watei-covered 'sweet. I potatoes. TomooINiwa, h4itsuo I?ujisaki, Runiharu Tanaka,..Iiatsuo Ta=and ]Iiroshi hiurakami(Tokyo. . Coll. Lit. 8ci.).' Scienca (Japan) 16, 94-5(1946) -In._ .:-w•ater-cavercd.sweet potatoes(ef. Sumil.i, C.A.,44, 2139c)'.. [. pectin is coagulated: asthe Ca salt, and so the ti,suesdo~ ;,not disintegrate on boJing.. Pectasehase no relatiom to~ this.change. Cacontaihedinthecellsissuffcienttocom-a binee with pectin. 1Yhcn the hardenedd sweet potatoesare. ,- boiled with asolna of alkaSi salts of asalic aciil,., the combined Ca is sepd. and they become soft. Similar'lra3dening is also produced by C1(Cly,, toluenc,and; other vapors oflf cell'. " poisons; this is the changr.due to the.loss of semipenne- ;abilityofprotoplasma. Tttecauseofthedistunbancebceausc- •-of'..water covcriitg is considered to Ue the cutting off of. Ot _swpply.. S.Kaseamura.andT.ICobayashi ~ ?el '139703c Bound watler in fruit products by the freeziitg. ntathodl& ht ]amcs H.:- Chan, King•Cham; Dollac,. .llcv. andcr, hf. IJCp.. Yood. Si.. Technol., Uuiv. II'.awaiii. Ho:mlulu, }3awaii), J. Food Srw: L971, 30(3), 498-wi) (Gi:g)'. Water fss bound' by fruit producn: andl pcctin (I) gets in the c utge of 3 to . 48P/o.. That bound by fruit nectar and "jnicee products,. except Q papaya,.is less than 10°[o and unaffected by added sucrosce solids. Q Papaya.pulp b:nrling rx34.-7%,.and.ismot.signi5camt15' a0cctcd'. ~ by.varyingpllfrom3.0lto6,0. Thewalcr.bnrrndbyaI-sucrose- ~ •titlic acid modcl incrcaced with decrease inpH. Thc I.model did. .~ not.gelluntil the pli was 5:0 oclcss.. Studies oCa I model sys•~ teuicontg: CaClrsuggestcdlthat.thc fornuuiumof a gel stn:rture . was ind'efwndent:t of Ntouudwater. Gtmtm tra,v,ncauth act:ivvly ~ bound'd water. Binding activity was related lo concu. frum 0.2~7 to0.8!'u.gum.without'gel fnrmatiou. .1'apaya pulp and Ifortned gels which bo,mdd nlmost 80% ob the totall water in the systnn. AdNn, o6 gums to papaya and I F.els did Inot affccL thc tutal autt. of'. . . bound'watcr„ but advcrsclyin0ueneed gcll formation,. ~Ivlorton Poder i
Page 36: fiw68c00
r2 3 ABSTRA'CPS SATO, C. S, ,, etL al. 1058 Metabolism of' methionine and pectin. esterification in a plant tissue. J. Biol,. Chem.233(1)?128-311, Ju3y1, tables. Joint authors: Byerrum, R. U. ; A1be.rshePm,. P. ; Bonner;. J. oatsections,bo:th in vivo and in.vitroy oxidize lnethionineto its sulfoxide. This reaet'ion.is essentially nonreversible. ~I-hfethionine sulfoxide donates its methyl group to~pectin and to . G protopectin and approaches methionine in effectiveness in~, this respect. Methionine sulfoxide also yields its methyl group to ' meth,ionine with.the fbrmation: of'metnylmethionitre. Methioaine sulfoxide cannot, however, serve as a; methyl acceptor in the - formation of' methylrpethionine. S-methylinethioninee actsas,a methyl donor in the formation of pectin and protopectin. It is, however, less effective in this function than either methionine -' or methionine sulfoxide. Su~lfur4abeiled methionine and. . methionine sulfoxidee were, shownn to tiee incorporated into the j pectin and protopectinfractions. (Summary)'(NCS) 1:,559 tllilization.of tantarind~seed "pectin"iu teitilc irtdustries.. ~ It1l. C~.1R. ~Szvu . Fadian. Textfk J..66,. 309'-11(1056);I C,r4„ Su„ 13:;ly„FUre pectiirn enube employcd as a. 7Liik,•ncr in snmc printing pastcs,., aud both.lorcnulhtions~~ of dyes with whicb it is auitablc and.unsniclblcd arc tivcu. . , . Brahanr Norwick ~, SCHLOTZIiAUER, W. Sl ; SCHMELTZ,. I. ;. DONIO,L. C. -Pyro qtic formation of.phenolsfrom high molecular . weight tobacco.leafconstituents. 'l0th. Tob. Ckem. Res. . Conf., Winston-Sallem„ Ni C.Nov;1-3, 1966. [Pro- gram :35-7] Inaneffort.tod'etermine the contribution ofcertain.high. - molecular weight leaf constituents to the phenolic content .. of cigarette:smoke, lignin, pectic materials and,cellulose were isolated fz•om. Turkish, totiacco and'pyrolyzed. Prior • to pyrolysis; the leaf constituents were.characterized by spectral and degradative methods, and~by comparisons.with~, commercially avafllable,, analogous; materials. Pyrolyses , . were carried out iu.a quartz tube at 700° C. under a stream_. or nitrogen- The pyrolysates were. collected im cold.traps , ancifractionatedintluusualway. Tihe.phenolicfractions were examined by gasand's thin layer chromatography. In all cases,. phenol and the cresols were the predominant pro- .- tlucls, but in varying proportions. Of the leaf constituents0` ' -Ihvestigated, lignin.and'peetir.material were foundito be ~ substantially better precursors of pryenol than cellulose:. I%] '. Cnmmercial samples of ligninyn pecGin and cellulose were N ~ tlmnd'to give the same.phenolsas their t~obacco: analogues "13 - ~' whenpyrolyied!under the sameconditions. A detailed studj~ • 'od thepyrullysis of lignin was tmdertakenn to.determine the ; Iry1thuunt temperature of phenoi.formation and the influence. -. •f ~dthega'seous~.environment.onthepyrolyticreaction. Cer- 1 ta.lln monomeric compoundsrelatedito the polymeric materials . ~ arre alsa.o pyrolyzed to.determine a.minimum structural - . r ^'rNlvenient for phenol formation.. (Eastern Utilization - ,~, Rrvse:urch and Development Division, ARS-IlpSDA, Philadel~- - ~ pGlu„ Penn. ) . .. .... _ . . . Y 3 ..
Page 37: fiw68c00
Kohn, Fuuda; r h~ the equivalent fraetion }~ 0' fhe dependence of the solution is not yet apparent + idonced': by the results given sof the selbctivity coellicienY ~ ;th of the solution, (µ 0•Oll to ~ ble V: The error of the mean, ±0-t?t, in view of the high, ! )efftcient Kc' on,the esteriftca- :tion log KK = f(E) folltiws's an of the stability constant 1{' 'aT'-ions t'o pectin strongly' t inereasingaverage distance. : macromolecule. When the -ery' fifth uronio acid unit' is f' d K+-ions,to-COO- groups icationi degree exceeds 80% . : CaTa''-ions always interact -( 4..K* -Ions inPecGn in De- 1og ICK 299'f 0.03 1 •37' f o-A2 I•51 f 0,01 1•48. f 0M 140~f 0-04 1•40 f 002 0-93'f 0-01 0•61i f 002 0-46 f 0,02 0-46f 0Q3 - 0-04 f &02 -0-23f &02 -0-3B.f 0-04 abt. C3em ecmmun. 1VeC 321 ({%7) rl 11 r 0 o' m m. en a z w Ftu 3 Dependenceot`SelectrvityCoefflcient.KK of Exchange of Iom Ca?+ and K+ in Pectin on its ~ ,, Estcr,ficat,on Degree (m.%) . !+ Origin~ of pectin. o'0 apple It, & apple II. O~~witdi apple, Q~.citrus~I, o~~0 citrus IQ; O sunflDwer„ G~sugarbeet0 Coa.enon Cvsho.lnv. Ghem. Camm~ ..JWot 321:(196T). Iprtcractionn of Catcium ans Potassium Ions with Carboxyl. Groups of:Pectin 44811 with two carboxyl groups of pectin.. Hence, at' a relatively great'distance between, free carboxyl groups im the molecule the electrostatic attractive: forces act less intensively on Ca2 *-ions than on K+-ions' which can.get into the immediate vicinity of --COO- groups even under these conditions. This is the cause of changes in the selectivity of ion exchange. The results provide evidence of the fact that in polyelectrolytes with a linear' inflexible macromolecule the change of'the charge density along the moleeule may evoke also a.change inrthe selectivity of exchange of mono• and divatent cations. The values of the selectivity coefficient K2' of pectin samples' of different pro- venience (Fig,. 3) lie im the immediate vicinity of the curve determined.for the basic series of pectin samples. with a statistical distribution of free carboxyl groups along the molecule. Similarly to the stability constant K„ functioni log KK' = f(E), too,, is of general validity regardless of the origin of pectin, po4yuronide content of the preparation, molecular weight, and character of neutral' saccharide units, bound in the molecule of pectin or in accompanying polysaccharides. Duel and coworkers° examined the exchange of mono- and. divalent cations'withs a pectin preparation the molecules of whichi were cross-linked by methylene bridges:. Contrary to their expectation, tlte.authors found a higher selectivity toward Me?+-ions in pectin sampleswith a lower capacity of ion exchange, Le. with a higher esterifica- tion degree. They could not explain this phenomenom However, the results do not permit us to draw any conclusions concerning the,dependence of the selectivity of ion exchange on the esterification degree of pectin. In this. case the density of the electric
Page 38: fiw68c00
Kohn,Fu ~ 1 1' lptcraction:n af Caltiumans Potassium Ions with Carboxyl Groupss of peclin, 4473 ~1 These solutions werasubjectedito absorbance measurements at 490 and 530nm, the quotient q (q= 14s9nlAs3o)wascalculated, and the concentration of free calcium ions inn the solution os read off the calibration curves for q= f(Caz+], described in the:precedingg paper9(see ' also16),.The:oalibration curveswere determined immediately before each.analysis:Themeasure- +, rpcnts were pedormed'in solutions ao, pH 7-S without the addition of bulferg„ at.a.temperature .. 7~ 111-22°C. : _ II II I ~ co v, ,., o 0 0 0 ^~ v a en~. ..,~ v fV b'.' N A aa. W a Y 0 e °, = ~! M ador.Chem.Commoo./VbL31/11967) ~ , ~ RESULTSAND DISCUSSIGSN' . /i Stability Constant K of Calcium Pectinate {, qpte interaction of divalent cations with acidic polysaccharidl;s can be described by the law of multiple equ(libria;, as shown for acidic mucopolysaccharides by Buddec- ge and Drzeniektb; and ]4fathewsr'.. These acidic polysaccharides (chondnoitin-sulfu- ricc acids, hyaluronic acid, heparin, etc.)' show a highh density of the electric charge of their molecules. Ih most cases each saccharide unit in. the macromolecule chain I, is earrying, an anionic group. On the other hand, the density of the el'ectric charge of the pectin molecule varies, within a wide range according to thedegree,of esterifica- tion. Therefore,, information was. needed to what. extent the law of multiptie equi- )ibria.can be applied to the interaction of Ca"-ions.with the free carboxyl groups of pectin. Provide& the binding sites of the macromolecule of the acidic polysaceharides ~ do,not.mutually interact and all.possess identical affinity to the bound cations, then aceord'ing to the.law of multipleequilibriats the following relation can be: applied:. 1 _ 1 1 ' t- r nK[Me] n I t 1) we obtain by modifying equation.(1) ,the.following.relanion: (1) t where.r standsfor.mol boundlcation/total.repeating segments, n the.numberof bind- ing ing sites per repeating,segment, [Me] the concentration of free cations in the solu- tion, tion, and.K the intrinsic stability constant., 111 The function lJr = f(1 J[Me])', is the equation of a straight' line from which the , values of K and n can be determined: If 11[Me] = 0 then 1 J'r = li'n. , It is. convenientl for the calculation of'the stability constant to choose as ligand unit such.a; segment of the macromolecule to which just one cation is bound when all binding sites are completely occupied. Then n= 1. Thus, e.g. a segment involving two free carboxyl groups should be chosen for the binding one divalent cation to peetin. When calculating the stability const'ant K of calcium pectinate (complex K = [Ca P] (2) [Caa"]fP' ] ©. ~ ~peqiooCmcliwla...Chem:.Cammuu.(VoL.321 tt96a N ~ O W
Page 39: fiw68c00
4474, where [Cas'1' stands for the molar concentration of free calcium i tionF [P'"'] for the molar concentration of the free 1'ingand in the solution i.e., molar concentration of pectin segmentg containing two free carboxyl groups, [Ca pf for the molar concentration of the corresponding undi'ssociatedd c p x, ~ K for the intrinsic stability constant Fto.l!' ' Interactionof C02'+-ions with Free CarboFyl CxoupsofBectiu. ~ _. .,i IMoi tioundd catfonltotal repeating seg- meets,: (Ca3+] Concentration of freeCa2'= ions iathe solution.. Esterification degree I 5,6, 2 263;,3 77•3,and 4. 59-8%.Ionic strength Dependence of Stability Constant X'K of Cal. _ eiutn Pectinatee on FSterification Dcgrec.of _ ~ _Peetin(in %) Origin of pectin 0 apple IL 0 appla:ll , O-wildd apple, e,citrus I,.O citnus-I10 sun- t7ower„p sugar beet: Ionic strength 0+01„2 0.02. - ' - . The stability'constantt of caltium pectinate was examined in pectin samples de- scribed in. Table I. T1ie analysis ofYhe samples is complemented by data on molgr ratios of neuttal monosaccharides found after total' hydrolysis of the preparation. These neutral saccharides can be bound. both to the chain of the pectin molecule and to accompanying polysaccharides. It has alteady been shown' for the original apple pectin I. (sample 1) , thatt these saccharides aree predominantly bound: in thepeetin~ molecule. The accompanying neutral pol'ysaccharidein wild-apple. pectin (sample.4) is represented by highly branched n-glucann of'the phytoglycogen. typet9. Other samples were not considered from this aspect. cueec5on Gschu.lov. cLem..e4m,nm. rvut. 321 Ctesl): Interaetion of t ~- ksh conuai: pectin'. The stabilit pectin I with The course of f , g•6„ 263; I the remaininl >nentally con free carboxyl regardless of for pectincst acid is carryi fore an intrim The result decreasing dt in the, mole, This iacrea& stlant K cons p = O+DD an by the char indicates th: volved. The courE in Fig. 2: , to curves I The dete: ferent provt obtained fc groups alor pectin II. (E tion vtdica On the b itrnction Io wild' apple, ion (68-5 of neutral cule of pec cetkcaon [xe
Page 40: fiw68c00
C,~O. 6/9,~5~~ AsSTnACrS r 6465.Ix. Binding of calkium.to the carlloxylproups.of pectim k'nhn„ Rndolf' (Slovak. Ak:adl tS'izc., Rratislava, Gech,)„ Znekr'e 14trK,. . 21(15), 420-a~(Gcr): A slndpof lhc.slrcngth of Ca•'' bindinc to thcearboxyll groups of pectin wasatlamptednceordne to Iic fullmvirn,•, . paramctcrs: (1) Iflc:activity off free Ca" in sohts..or suspcnsioos of' Capeotinate, using tetramethylmurexide; (I) the stability con.tc. of' • i'lhese complexes: (3) the.selectivlty, coeffs,- of tlie exch;mec of Ca" andK•'withpectin;(d)dctn..ofitheamts•offieeandlboundC'a'•in " the pcctin mol. M'a1h: deseriptionsaregiven. Resultss arc ln he .~~'.given in a subsequentarlicle. ` Hl S. Rachclard '46Q78q Binding ofcalcium ions too acetyl derivatives of pec- : tims JK~o! n-, R.p'. Rnrda, 1. (SlbvensRa Akad.. Vcd Bratisiava„ ' Czech:). Cnllecd..Csedr. Clmnr. Cnnunnn. 1968,.33(r), 2217-25' (Eny),. The stability consts. K svcre detd..by acetyl: dorivs. of' . CW pcetate and ofCn: pectinate acctylated'.to.0-1.7'3 degree of . substitution witle acetyl groups;. With increasing degree of' <acetylation :of. Ca pcctate thee stability const.. gradually'dccreases ' and approachcs asywp.otically the value of logK = 2.5. With - . C'.epectinafetheeffecturAcRtoupsonthe:stnbdityof.CaBinding . is substantially lower; the stability consA: deereases oxdy slowly • ; with increasing degree of acetylation. 1nce . view of lt. G.. -Sehweiger (100i).ou the.chelate•..fwnd of Ca in Ca peetate is dis• -' eussed, Ifis'suggestcdrtlmt lhefia ions are bound first of'all by° electrostatic attractive forces. The same conclusion is rcachedl an the basisof tlrcoreticul considerations based'd on tlicstrttctura - .. of lLepcctin.mol: andlofthe dctu. of the distnneeof adjacent free carboxyl groups carricd.out'.on the pectin mol• modcl.. TheAc ' gioupss of pectin-treakeu the binding of C:r as a.steric hindrance ~ which.plays the Eteaterrolo the shorter.tlre distance bctfrceiub.n" ftcccacboxyl gronps. ._ . _• . . Ea I3rdos _~ . • 187980~ Interaction.of calciumand potassiuin ions wit'hcar- boayl Aroupsof pectin. R. H.nhn and 1. Furda (S/uvakian P:kad. - Cerl, ISrntrslavar. Czcch.).-IC'n7exR Cxfk.. Cheru.. Cmnarra', 32 (12). a4v0-&f(19b7)(1?ng). The stability coust.li: of Ca pectin- ate and the sclectrvitycoe/f. (KF•) .of'Curravd K' exchangc im pectin with a statistical distribution of f¢r COQH Kroupsinthc ... rrrol'L were tabulated aet various esteriftcatinn deyrcese and ianiestcengths. Tlte interactionoOCa"'withCOOH'.groupsof pectin .. fs&ovcrned by the multiplc•equiL law. General relhtious,wcre foundfor, KandKh as.functions ofionic strength, degree of'-' esVenifii.ation.of pectin, andiof ttie ntean distance.of free CUGU groups (inn tl1e: md., regardless of theori8in of pectin, its'poly. ~umnidc contcnt, mol. rot., and oh tfrecharactcrof neutral units in the pectin mrd. From thesc relatinnx, K and Kti' values wereealcde for 9 typical'structures.of pectin. Bntlr eonsts: are qood. . •eriferiaof3hedistributinn..pattern,offrecCOOHgroupsahmg.therttof. of'.pectin•. 26references, ,... . Kare1 hHicka ~. 17105f Binding of calciurn•lo anrboxy/ gruupss of peclin.Kohn„ R. (Slovnkischen Akad. LVlss... Rrntislava: Ceech:)• =vr1968,.?1(di), 468-75 (Ger). '1•he effecuuf thedepreeof esterifiration, of pectin (in 11W bindiii[, nf Cn iss reviewed.. Thoo biirrho, strength was derived fronutlte activity of Ca ions in vnlns. of Ca peetihele, the Atnbilityconst., of lheCn corq?lex, and the• selectivity tvroff... of the exchange of' Ca vs: K. As an ion ex-' changer, pectin shows a higher. sclecbivityy for li.ivalcut than fht monovnlenl ealiims. Co is: bound too the c:rrbnxy1groups of pectirrPoy eleclrru'talic furcev,. In the tloceulaliun of CnCO, pertin, • iAeffective nnlv' when the evtrrifirnlion degree is lower than 25'-:11YYr',.P.ultitddeeacrilirutinrtbypediuoslrmzadurmsscnmonts. with n bfnrkwixc arranGr'mrnt nffrt•e carbnxyl groups. It is tluw ~ prxsiblbe tonbtnin pectin prepns, which hind Cn even nl't highh esleritidatinu drFra,tro. S'-Aftcrgut ~
Page 41: fiw68c00
a I 1 Tubelle 1 Galakturonsiiura - als Anhydrid - in den Blattern der vaahsenden Tabakpilanze i I I , Lrgo Havann IIe Virgin 232 Probe $Iatt- in % d., in °l, d. Gosnmt- in % d, in % d. Gesnmt- in % d. in % d. Gesnmt- an®stz Tabak, galakturonsaure Tabak• gnlakturonsaure Blatt• 'Tabak- galakturonsaure Trs. Trs. ansatz Tre. -- _. . gceamt unliisl. I lusl. gcsamt unliisl. I losl. gssamt unl'os1. I lusl. fintzfingest adium ' 0,71 79,1 20,9 10,06 79,3 20,7 - - - - 1. uberrcif 1-3 9,08 82,0 17,4 11,30 88,8 11,2 1-2 9,14 - 82,8 17,2 i•;rntoetufa reif 4-6 12,33 87,0 13,0 13,26 84,3 16,7 3-4 11.45 85,8 1#,2 29.7. unreif 7-8 12,42 84,9 15,1 13,40 83,2 16,8 5-G 12,26 87,1 12,9 2. ube_rreif 9-11 14,37 87,3 1'l,7 13,5`d 84,1 16,0. 7-8 13,86 85,6 14,4 Erntestufc reif 12-16 13,84 88,9 il,i 13,44 83,9 . 16,1 9-11 12,66 85,9 14,1 20.8. unreif 16-17 12,63 78,8 21,2 12,94 87,2 12,8 12-13 12,15 79,3 20,7 3. iiberreif 18-21 13,98 77,8 22.2 13,76 79,3 20,9 - - - - Lrntestufo rcif 22-24 10,75 7',1,4 20,G 12,61 77,3 22,7 - - - - 17.9. unrcif 25-26 9,38 81,2 18,8 11,73 79,0 21,0 - - ~-9cWzzoo ~ ~ Tabene 2 ~ M.othozylgxuppen und Voroetorangegrnd dor Poktine in dan Rliittonn dor wnahnoncton Tnbnkpflnnzo
Page 42: fiw68c00
ilatcradion of CalitiumandPotassium, Ions. with~ Carboxyl'. Groupsof Pectin 4471 F_CPERIMENTAL Chemicals and Preparations - .. Apple pectinI was.a Danish.commercial preparation, apple pectin 11 was a prod'uct of Pektinwerk, t Ootha.GDR,.sunflowerpectin was a.Bul'gariamcommercial preparation, and' beet pectin (Tti- ' '' klin)was aa product. of' Svenska Sockerfabriks Aktiebolaget, Arl'dv, Sweden.WiSd-apple • I~tinaandcitruspectin AI were suppliedd by Dr J. Roslk, Institutee of Chemistry, Slovak Academy of Scienees: Tetramethylmurexide (ammonium. salt)wasprepared) by Dr. I. Jeto . ofihe same Institute.. All chemicals weree of analytical purity. The specific conductivity off re- ~ystillcd water was 2. 10-6'ohm-t . cm-t'. . . , . : ., Received October 17th,1966 :fficient,(KK,•) of Ca2+ and,g,+ rboxyl groups in the moleculk yl, groups of pectin is.governed :"were expressedd as functions lean distance of free carbozyl lidity and do:not', depend on the :he molecularweight andd nature ,ccompanying polysaccharid'et line typical stmcturesof pectio,,ution. pattern oflcee carboxyl -onic acid'S is important ; degree ofesterifrcartion .nt; tTte£trmer are the cell wells. iWiogenic fungi is`paralleledby ound to pectih orr to the peetin- ita.of infection of tobacco leaves lch~theu inhibits the hydrolytic odium, and magnes ium: tons do has so far been examiuedlonly +tained. 8ndingss cannot provide . wth]a lhd discussion sectioa nt cations to.pectic acid: in view g.solsand gels towhich sucas tability constant of'calcium xstrepgth and of the ~electiv; t pectin as a:function of the .... . . ..Li. .. ~ uatmvCb ryyt; 32/<1Ffr! euasuae~Cts¢Nosto.. Qbem. Cummua JWol.l2f t196n . . ~ ' ~ ~ ....._ _ C • . ~ ,TI. . ~ preparation.of.Pectin Samples andiAnalyticall Methods . ps astandard~series of samples we used the preparations of.apple pectin I with a statistical distribu- don of free carboxyl groups along:the molecule (Tab1e:I, samplesI-7). The preparatiomof these pectin samples was.described in.the preceding paper9: Citrus peetin.IS (sample 11) was prepared , ftofn albedoby one-Hour ektraction with 0'05ta-HCI at 80°C. Pectin was precipitated in the concrntratedd extract bythe additionn of twoo volumes of ethanol. Inaddiition to these samples prctin isolated from wild apples,.sunflower, sugar beet, apples(Ii) and citrus (1) was also used. NI pectinn preparations weree purified by repeated washing with: 60%; ethanol acidified with , yydtochloric acid (5 ml of 37%.HCI per 1'.00 ml cthanol),, by neutral 600 and 95%ethanol, and byethen.Thesamples.were.diiedat.temperatures:.below60"C. The free carboxyl groups~ of pectin,.its esterificationn degree, and thepolyuronide contentof..the - preparation were determined acidimetricallyto.. The same analysis of the solution of potassium 1 pectinate (sample 2) was.performed by the method based on the precipitation of insoluble.copper ( pectinatetl,tl The molecular weight of pectin was determined viscometrically13. Neutral ~' taccharides.in..pectinhydrolysates.wereestimatedbypaperchromatagraphy:9, Determinationof Concenttation.of Free CaIcium Ions in CalciumPectibate Sblution ! For.the ealculationof the stabilityconstant (X)'.of caleium.peetinate.and of the seleetivitycocffi- cient of caleium~ and' potassium, ion-exchange (KK )1 in pectin we determined free: and bound ` calcium by the method.of Raaflaub1i6'~rs usirig tetramethylmurexide as an: auxiliary ligand"6. ~ First,.a solution of potassium~ pectinate was prepared. All pectin samplesin.H+-fortnwere y' we0 soluble in water except tbn sample2.,The pectin.solutions were centrifuged at. 6000.g and ~ slowly neutralized with P4NtKOIifree of carbonateto pH 7•5. ~Sample 2(E-: 5-6'/,) was dis- t solved onlyin~ the course of the neutralization; the solution of potassium peclinate was then ~ centrifuged and its.eoncentratiom.of free carboxyl groups was determined by the mettiod.of preci- , pitation of insoluble eopperpectinatesi't•rz, To the solution.ofpotassium.pectinate.c: 0-02m-CaCiz was.added' in amounrts corresponding ~, to 25, 50; 75, 100,. 125, and: P.50%of the equivalent concentration of free carbozyll groups. The ionic strength, oftlhe solution wasadjusted by the addition of int and 04Sr-KCI,, respectively. +1~, When calcutatingg thee ionicc strength both the concentration otl potassiuem pectinitein the solu- N tion and the eoncentration of:tetramethylmurexiHe were neglected. II 7fhrbinding of Caz't-ioas to the carboxyl groups:of pectin was examined imsolutionss at pAI ' 7~.5'conmining per I li 4. 10-3 equivalent' of [-COO-K']„ 1.10iY6. 10-3„equivalents of'[Caz+,], and 4!. 10-3 molt of tetramethylmurexide. The ionic strength was 6.01. .0-02, 0:-05, ~~~''' y 010, and 043.
Page 43: fiw68c00
w -TABLE:2: Methoayll groups~and.d'egree.orestert0cntlanof pecttns In the ka.es of.growtng tohacro plants ERGQ: HAV/kNA, FIC'~ . Pectin, Methoayl. Pectin Methoxyfl . groups as groups as methanol methanol Degree Degree . y, % totali of %r tatal of 8ample Ikaf dry galacturonic esteri0- dry galacturonic esteri8- , position, matter aeid cation matter acid eation At plantingout - 0:552 ~ 5.70~ 3'1.3' Bottomthird Over-ripe: 1-3 0:262 Reaped Ripe 4-6 0t648 29.7 Unden-ripe. 7--8 0:542 2.88 5.26 4:36 Middlbthirdl Ovcr-ripe. 9~-11 0:491 3..42. Reaped Ripe 12-15- 0t483 3.49' 20!.8 Undervripe: 1B-170t402 ..3.2( fJpperihird'Over-ripe 18-21 0A09 Reaped Ripe 22-240:361 17.9 .Undt;r.ripe. 25:-26. 0! 395 15.8' 28.9~. 24.0' 18.8~. 19.2~ 17.7~ . 16.1 18.5' 23.2 2193 3.36 4.21 VIRGIN 232 ,. D;owerthird: Over-ripe 1-2 ' 0:428 . 4.68: 25.7Reaped Ripe 3-4 01722 6,.31 .34.729'..7 Undhr-ripc' 5-6 0~690 r : 5:.6331.01 Middlethiid' Over-npe 7.-8 Reaped Ripe - 9-11 20.8 UndEr-ripc 12-13 0:486 3:.51 - 1!9.3 0;364. .. 2.89~~ .115.9 '. 0:384 3~.16~~~.. 17.4 on the plant; andllAee related change: in total~ galacturonic acid (Table I) is unmistakable:. Higher up the.plant; whcre biological development had notgone so far,, the changes encounteredahowno significan0 trend. 1lence it may be concludedd that thee qualitative andi quantitativce changes in pectins are.related less.to variety or leaf position than to, biological conditions. Table 3 illustrates the propertiesof pectins isolated'Gom growing,llraves of thevariety. Ergo:The.yieldcorrespond'ed to96.3'.to 50.2 pcreenG of thetotaligatacturonic acid. The samc.trends as 464 0~,.53L 5.29~ 29.11 0~.395 3.50~. 19.3~ 0-643~~ ~ 4.85'~ ~ 26.7'. 0.532 3.97' 21.8 0A85 3.57~ 19.6~ 0.512 3.81 21.0' 0~.509 3.93~ ~~ 21.6~ 0.510 3.71' 20.4 0.448 3.55' 19.5 0.423 3.61 . 19.9 in total gatacturonie acid'd weree seem at. diRcrenl plant positions:; in the bottom. Ohirdd similar amountsin"under-ritx" and "ripe" mnterial, both being appreciably liighcrthan~in the. "over-ripe" state. On the othcrr hand~ in the.upper part ofthe plant the values decreasedi appreciably from "over-ripe" to."undcr-ripe". The molecular weights increased'n in the bottom third from: "over-ripe" to"ripe" to "under-ripe", but behaved exactlyoppositelyin the upper part. The.differences between valuesvrithin each part of the plant were highly significant. If one epm- r I
Page 44: fiw68c00
w TA$L& 1!.-Gelactumnle aeid (as the.anhydride) fn Ieavess of growing.tobacco plhnts r - ER'GCl HAYANA.I'IC - Galacturonic Acid GalncturonicAcid Leaf. Total % % Totali % % Samplb Eosition dry in- '/,. dry in- •/, - matteo solublee soluble matter solublesoluble. At.planting,out " Bottom third: Over-ripe _' Reaped Ripe ! 29.7Blnder-ripe i Middle third Over-ripe ~ Reaped Ripe i 20.8. 8lnder-ripe ; Upper third Over-ripe i . Reaped Ripe 17.9fJnder-ripe Lower third Over-ripe Reaped Ripe 29.7' . IJhder-ripe -. Middle third Over-ripe . Reaped Ripe 20.8'. .. U'nder;ripe - 9.71 79.1 20:9~ 10.05~. 79.3'~ 20.7 1-3I 9.08 82.6 17.4~ 11.30 ~~ 88.8. 111.2 4-6~ 112.33: 87.0 13-0. " 13.26I 84.3~.. • 15.7 12.42 - 84.9 15~..1i 13.40 83.2 16.8 ~ 941. 14.37 87.3 12.7' 13.59' 84.1~ 15.9 12-15. ~ 1'3'..84 88.9 11.11 13.44 ~83.9. 16.1 Mi-l7~ 1'~2~.53 78.8 - 21.2~. 12.94 87.2 ~ 12.8 -~ Lg'-21', . .1'3.9877.8 22'-24 - ll0s75 79.4 25-269..38 81.2 22.2 20.6 18,8' 13.75~~. 79.3~: 20.7 12.6]! 77.3~ 22.7 1].73~~ ~ 79.0~ 21.0 1-2' 3-4 5-6 9.14 82.8 81,.45' 85.8 12'.26~ 87.1 7-8'. - 111.86 85_6 14:4. 9-11. __12.55 85.9 14.1 . 12-13112,15 79.3 - 20.1 third, duee to its.longer vegetative period, ripens somewhat later., This ismanifested as a more .. uniform peetirt content in,the parts or Havanrlie. The original galacturonic aci& content at plant: - Ing outapparently undergoes apprcciabltr.changes • dudng d'evelopmcnl. In~ the bottom third!. afa11 threce varieties it increases from "bver-ripc" to "ripe" and: to"under-ripe:', wNilee in thee rest of . the plantthe opposite tendency is secm Thcpeetins of 'bvcr-ripc' lower lcavcshad alixadybeen ,.- partly destroycd beeause:of biological processes ~' connected withgrowth, conditions- at the time partfcularl}ihe prevailing drought. No conclusions could be drawn from the ratio of solubfe to: insoluble galacturonic acid. - . Table 2 shows.that the ratio of methoxyl groupss to.total' galacluronic acid and thus thadcgree of" csterifieation: is highestt at planting:.out,,as shown by the figuresfor Ergoand. Havana itre varictics: The largest dilferences~ between slageror ripeness were foundd in the bottom third or olll three varieties. Ripe 16avescontainedmost metFoxyl groups while lhe: over-ripc.had considerablyless;. The degree of esterificalion follows the sametrendt It. follows that biologiuallywellldeveloped leaves , dernethyl'ation have already undergone extemive / /' .
Page 45: fiw68c00
Erntoetufo roiE 20 8 iE 12-I6 1G 7 13,84 12 63 88i1.. r ~ 11,1 13,44 83,9- 10,i 9-11 1",65 86,9 1 . . unrc -1 , 7 21,2 12,94 87,2 12,8' 12-13 12,15 79,3 _,7 3. ii, crrsif 18-21 18,98 77,8 22,2 13,7b 70,3 20,7 ErntestuEe reif 22-24 10,75 70,•1 20,G 12,61 77,3 22,7 - - - - 17. 9. unreif 25-26 9,38 81,2 18,8 11,73 , 70,0 21,0 - - - - 'Tabelie 2 . I 5^' Tiethoxylgruppen und Veroeternngsgred der Pektine in don Blattern der wachsenden Tnbskpflxnze - -- ~ - h]rgo ---- Havana II c ___ - Virgin 232 Pektinmothoxyl• Pqktinmethoxyl- , Pcktinmethoxyb gruppen als- gruppen nls gruppen als Blott- biotl.ylnikphql - Methylalkohol ' $latt- Methylalkohol Probo , unsatz -- Vereste• Voresto- nns$tz Voreste- . im Ver,- rungs. im Ven rungs• im Yer- rungs- in % d. h5ltat. grad - in % d. hnlAn. grnil in °,n d. hiiltn. grad . . T_nbak_- zu Ce- __ - Tabak. aa Go-. 1'abnk- zu Ce- . Tra. samt- Trs. samt- Trs_. samt- . - gulakt. . galakt. I galakt. Setzlingsstadium - 0,662 6,70 31,3 0,531 5,29 29,1 - - - - 1. fibcrrcif 1--3 0,26~ 2,88 15,8 0,325 3,60 19,3 . 1-2 .0,428 4,G8 25,7 Erntestufe reif 4-0 G,G48 6,2G 28,9 0,fi43 4,85 26.7 3-4 0,722 G,31 34,7 29.7. unroif 7-8 0,542 4,3G 24,0 0,532 3,97 21,8 6--G 0,GQ0 5,G3 31,0 2. iiberr_e_i_f_ 9-11 0,491 3,42 18,8 0,485 3,67 19,6 7-8 0,48G _3,51 19,3 Ernteestufe reif 12-15 0,483 - 3,49 10,2 0,512 3,81 21,0, 9--11 0,304 2,89 15.9 20.8. unrcif 16-17 0,402 3,21 17,7 0,509 3,93 21,6 12-13 0,384 3,1G 17,4 3. uberroif 18-21 0,409 2,93 1611 0,510 3,71 20,4 - - - - Erntcatnfu reif 22-24 0,361 3,30 18,5 0,448 3,55 19,5 17. 9. unreif 26-2G 0,395 4,21, 23,2 0,428 3,61 19,9 - - - - ~ rr
Page 46: fiw68c00
--~ • Kohn, Furda:~ lntevaetionuf 4'al6ium and. Potassium Ions with Carboxyl Groups of Pectin 4483. - the esterification degree. y~ ~ups„ which belong. ~thT, and thus.form sites valent cations is in, such. ;tcrification degree of the: y coefficient KK' inpectin, cctric charge of the mole. nfind'ing that the coagula_ ,r the esterificationn degree ? 2 onlrfeanDistance:of Free ultiplk of the distance betwan hich Y= 1.. The distribution rboxyl group; -o- carboxyl StabilityConstant K and' Selectivity Coefficient, K c'asCharacteristics of the Distribution Pattern ofPreeCarboxyI Groups in Pectin Molecule t . $vidence was presented in the preceding paperg'that the activity of Car *-ions in the solhtion of calcium pectinate is a good criterion of the distribution pattern of free carboxyD groups along the pectin molecule. Our postulate was based on. the finding sltowing, that the pectin molecule is. linear, with a restricted flexibility and therefore when the distributioni of free carboxyl groups is statistical themeandistance between them, can be calculated from the esterification degree: Simil'arly;, the stability constant K of calcium pectinate and the selectivity coefficient K' of the exchange of Ca'+- and! K'-ions can be expressedi in terms of the mean distanceof free: carboxyll groups in, thee pectin molecule.. For simplification wee con-sider in our calculation the distances. of free carboxyl groups only in the vertical projection to the main axis of the molecule (cf.9 for more detailed explanation)4 We ezpress these distances as a multipl'e(Y), of the distance of carboxyl groups of two. adjacent.D-galacturonic acid units for which Y= 1. The dependence of logarithms of the stability constant K and the selectivity coeffi:ient KK' on the relative mean distance of free carboxylgroups Y is shown in.Fig. 4. These.relationswere calculated hythe.interpretation of curve 2'in Fig. 2;which expresses the function log K = f(E)' at ionic strength µ= 0,02, and' from the coursee of function log KK = f(E) in Fig. 3., Points A through H indicate the values of the stability eonstant K (curve 1) and of the selectivity coefficient KK' (curve 2) for eight'~ typical pectin structures with a difierent distribution pattern of free carlioxyl groups along their macromolecules. The values K and KK' for Y = 20 (structure I)', where only every twentieth uronic acid unit in the chain of the molecule is car- rying a free carboxyl group, are not given in Fig. 2.. For thisstrueture.log~ K = 1•77and log,KK,' = -0•34., It is obvious from the course of functions Iog K = f(Y) and log KK' = f(Y), andthe.exactness of the determination of these constants that the stability constant K and'the selectivity coefficient KK' are good criteria of the mode of distribution of free . earboxyl'..groups along the pectinmolecule. As wilL be shown in the fortheomingg papers these findings may well be utilized for the examination of the distribution patternof fYee carboxyl groups in acidic polysaccharides with a linear macromolecule: We are.indeBred'.to Mr M: Bystran forhis assistance inthe experimental part of this study:. RFFFaF.NCER _~~`~-~- Dg. . ~ .. ~, . ... .. '.oti CLem. Ccmmua JVOti 32/ (196'1? 1., Wallace Jt, KuE J.,, Draudt H. N.:'. PhytopathologySl,.. 1021(19fi2): 2, WeintraubM:, Ragetli B7.. W..J.: Phytopathology Sl, 215 (1951).. '3'., Zaillin ML„Coltriu D.: Plant Physiol'. 39,.91 (1964). 4., Deue1 H:, PdutschnekerK., Solms'.J.a Z. Electrochcm 57; 172 (1953). 5.. Deuel.H:, HutsdwekcrK:, Stutz E., FrederilsJ..C.: Helv. Chim..Aeta40; 2009(1957). 0 0 Calltcaoo f'achcdnv:,Chem, coo,mup.NoL 72J:(19671' ~ 1A ~ ~
Page 47: fiw68c00
Isaeo Plbnh - Ikgree of icateriB• cation 29.1'. 14.3 26.7 21'.8' . . TABLE 3.-propertla of pectins Isolated hom Icases of growing.tobaero plants tarietyBrgo. .~ Sample • " . Isolated pectin calculatCd as galacturonic acid anhydride : " 'ce 1De Leaf % dry total glaeturonic. . Mean SpeeificMolecular g of estedli- position matter acid viscocity1Weighteation Att plantiiig out Bottom~ third~. 0ver.ripe~ 1-3~ 3'.3~. . ~ 36.3~. 93 1158,0D0 24'.5~~.. Reaped~~ Ripe - 4-61 " 5'.2~ 42.2 ~ 1125 212,0(10 31.6 ~ 2917 ~ Under-ripe~. 7-8 510~, . 40.3. 145 246,000. 31.6 Middlethird' ~ Over-ripe _ 9-11 ~ 6~..6~. . 45.9' 189 320,000 19.3. Reaped! ~ Ripe: .. 12-15~~ ' 6'.3~ 45.5. 143 246,000: - 19.2 20.8 ~ Und'er-ripe 1frI7 - 5.0: 39.3. 116 197,000: 22'..5 Upper thiid'. Over-ripe 18-21 618'. 48.6 228 386,000 ~~ 21..2 Reaped Ripe. 22-24 5.4' 50.~2~~ 198 336 000~~ 23.1 - 17.9 Under-ripe 25-26 4,7' 50.1 154 , 261,OW~~ 26~-7~ pares.the valuesfor the same stage ofripeness in dilferentt parts:opthe plant, an increase in moiccu- larwcight with Icai position-can be detected(wit'hone exception). Thissuggcsts that the proto- pectin in thee plant behaves similarly:. Thus the pectin molecules in thee upper leavesare.larger than those in.the lower.leaves and the: degrcre ofropeness.mayhave a.eonsiderablc effect on mclhcu- lareize. The degree of esterification round for the isolhted pectins iss higher than that ini the.corresponding tobacco samples (Table 2, Erga varietyjbut was lower in the "over-ripe' than in Itaver at other stages ofnipeness. No:further important tendencies coulcr 1>edetected. . TABLE 4.-Galaeturonle.aclil (calinrlaledas anhydride) in tobacco at reaping and after eoring and firmentfng •- by several methads- , - i ERaO-- HAVANA.h1C u diRernnt rd' similar 'eriql, both over-ripe" ,art of the ,bly from ne bottom idct•ripc", ppcr part. each part one aom- Sampl'e At reaping Flue cured Air cured Ftue eured,.ncdnicd, and'' hnt- room,hrmcntcd A'ircured, rcdried and hotl- room fermantcd Aircundland fon:ed fermented Aii curcd and fertnen ted'~ in piles Total "/,. Total %' dry % . % dry % % . matter inAoiuble soluble - matter insoluble- soluble -13~.84 88.9 ~ 11.1 U..09 82.3 ' 17..7' ~ 12~~.53 83'..7 ~ 16.3~ 13~..18 81.4 18~,4 ~ ~ 12.97 82.3 17..7 ~ - 12,82 19'-5 ~20.5 465 13~.44 ~ 83i9 ~ 16.1'~ ~ ~ 12~.6g 79'il ~ ~ 20.7" I f.
Page 48: fiw68c00
~ Structureoforientedgelsofcal'ciunvpotyuronates.,'Clar- St di ' ence er n~(Univr of Califi BiTlfrL ~..orna, Davis).nrn. e BioP'tyl s. Atltr.26,Y86-97(19n4)(yn 1Srglish): Orivntcd Ca. ~, alginate mrdd pectate gels were made by pennilting Caa ions todiffuse into a: streamingso1 of tlre Na pol'yurotsttc:. These slrawed a more orlesssclectiveuniadauar and.a uui: - - axiitli orientation according lbthe.evidence of x-ray dillrac: lionn patterns in the 33 major axes. Cry'stalljnity was en- =hancedby freeziug; acidification,, or reealcificxtiou after acid ..treattuent.. In all gelsthere.was.a rodlet type of:fornt bire- ~- friitgence.in each of the 3 orthogonal axes, the irrtrinsic.birc- c frivgence of the poctatesubstance bcing.negg andithat of Ilm ,,algihate substance pos.. Deviations fromtllcse.results oc-'curncd„ primarily therestdt of' adsorptionn birefringence. . , Microscopic sections showed a tangettially landnatostnrc, lure'inthe fresh gel and an aggregation'of the gel substanee intoanastomiiing,tangentialplates uport freezing. The gel: _gaveup water readily and reabsorbed'.it poorly., ItSisug,- • gested that both polyuronate gels have relatitrely strong. ', polyuronate-polyuronate bonds in the radial'l direction-. Thcse can readily supplant the weaker polyuronate-svater bonds. The differing signs of intrinsic viscosity between. -!' alginate and pectate aee discussed and an explanatibn of' , structure suggested. A 2-fold screw, axiss with the. I(cft C.A'.. 40, 00")conGguratiou of tlie glucosidic bond tothe ~ ,. plaue of.f the pyrauose ring is proposed for both gul'.mo1s. " The swelling oE'potatd starch inn thepresence u6 dehydrat- g lag. agents. &.Ta11{tJ and.F. Berscliucfder. Nahrang2; ~ '/I S G83-96(19fiS)-Se tthe swelling effect of\cater iss altered r by addn. of dehydrating substances: (mono- and polyhy- J . . drnxy compds.), the e_ctent of hydration caused by'these sub. • - stittcess is measurtd byy swelling.g testss with, potatoo starch. . . -~Tf¢ee.ahernative exptf. approaches are possible:, (a) keep-_ , . , ingg thctempe const. and ex.•ung..thesvelling effect of equal .. ; concns. of the different tested substanees;: (b) detn.ofZhose •. concns. of the substrates that eausee an identical svclliitg- effect;. (c) measuring: the temps. that cause a certain uni- - fdrm degree of swellingunder equal concns-of tlre eompds. t . . The2ndvmyprovedbestandwasadopted., Thedisappear- , .. ance of the erystallite structure in the nticroscopic.pieture antongthe testcdd dcs.,.2-I4O11(snu,lcs 11y0/O1l) is great- estl 'L1tclwvhyJlntiunnflhepalrlrydTnzyco~npds.(nthyl. ofthe.potato-starch grains was takenias aicriterion of the swelling process,. One g. of potato starch. } 10' ml. of'distd. _ water was heated to 64° over22"-30 nrin. until alf the starch . ' lost the:crystallitestructure., The incipient stage of'swell- 'ing, when 1-2% of the stardi grains were swollen, scrvcd as a marker between nonswelling and swelling. The swellfngg started in the side of the starcln grain. Small expanding, . - bubbles:appeared'.,, trhich filled out tltee whole grain vol. in . time. The swelling was identical in, dioxanc as welll as in - aq. solns. of sucros-c„glucose, glycerol,, andd alsopureHA: Im 91c soln.,tlre.s~ccllbtig structure showed.radiul cxpansioa patternssimJar too those revealed bc• heating up to17u°'or by itradiatiou with eanal.rays: The strnetures.ean be stained' with safranin red. Tliat. concn. of various.ales., sugars, and pectin which is just.abie: to prevent sa•clHng.of the: starch grains beyond a: I-2°Jo% ratr.is the borde} concn. , oCthedehydrating.agentsat64e.. ThcyarcLibulatedy In I the preseneeof thesc compds. •at:.least 46-64% is rcqrdcedi to. induce swelling. Considering the hydroxy1 gronp.s'uf Uhe rlehydtationn agents as hydration centers, the water-biivliug capacity is bound to,increase according to the no.. of O.iO- groups„ although not. Inupnrtionally, since the polarity of thoihdividual.Oil group dhpcnds rnr the- whol6.mnle struc• tLme. Iir the ctse of sugprs:also tbc O atomsof tlie acettd link- ngeact.as a.hydratiorr ccnter. The wutc•r-Uinding capacity'per OB1group of dilTcreut dchydratiouC0mpdc- is conrpttted.. t - Amoug , tim .su>, trs, sucrose (3.0~ molea 1i:0/Oll) i:; Rrcatest;: euc-glycof, glycerol) is explaiued.as a.limitatiau.nf solveutl_ al'tacllmeut by iu.ternatsatn..witlrmofe. of the s:mre sPt•cics, . by'sterie hind.ring dne to.thc dens. Ioeation of tbe O11 groups, and by formatiun of'bimnlf aggregalc.r. Thconu- twlar 1,•t-dioxauc shows little lcudency towardsbinding.oC i watcr. Ef. W. Scharpctwrel' t
Page 49: fiw68c00
r I . _ _ .... -._ ~ _. Tabelle 7 Untersuchungen an Orionttabaken Nevrokop Sainsun XnnthiYa.kn iznur ` Angaben . 1 achlech I I~' I 1"I I I I II I III I ~ III mittl. tere . • I Qualit. Qualit. Galakturoiauuro als An- - hydrid in % d. Tabak. Trockcneubstanz 11,38 11,33 12,22 11,34 11,85 11,30 10,21 10,74 11,62 11,50 Unloslicho Galwkturonsaure ala Anhydrid in % d. . Gesnmtgalakt. - 63,2 70,9 76,4 76,7 76,8 82,8 . 74,6 75,0 73,1 73,1 LSsliche Galakturonauuro a1s ' Anhydrid in % d. - Goeumtgalakt. 36,8 29,1 23,6 24,3 23,7 17,2 26,4 25,0 26,9 26,9_ Pclctinmethoxylgruppen ala . "1Tethylulkohol in % der Tabak-Trockensubetanz 0,621 0,564 0,640 0,608 0,620 0,599 0,66G 0,665 0,683 0,690 ~ Verhaltnis lkiothoxylgcvppen zu GeSaIDtgalaktnron- eouregehnlt 5,46 4,97 4,42 6,86 6,23 6,30 5,64 5,26 5,02 5,13 S'erestetvngxgcnd . 30,0 27,3 24.3 29,6 28.8 29,2 30,6 . 28,9~ 27.6 28,2 w F S qy, i9 R q p=~ y m `~ t, ~ x w N
Page 50: fiw68c00
1963, 22: , ' 1063,2 ' Tabakpektiiir.nnd d'cren.Rintlh0 nuf dio1'abnkqnnlitab' 249 lYcrto der 2. und cr "ich.ab. Man on .,oebnissenn arn ry ,,iiberreif" iiber + 3. gcrade unige_ untcrschierlc zvri- clpr5gt. Vergleicht teifegradcs in, den :nalm7e, unld zacarr dime des.'.tioleku• s ist anzmieh nen, asee cerhalt. Dies itterngrol3cr eindl Ausbildung ciiiem st gegeniiber d'em, lit. Jcd'oclrkomztit qHtt in1 VergPcich iger Iicgt: In IIe- a'uclr flier gesagtlusammenh:inge'. + Ergo ergab dcm- mX grof3er wird. J nl " znl„iiiber--lben. Reifegradesunabme mit stei- ad der isolierten as, Blatt'erm im all- erten Talbaken , i'edcnen I3eJiand- I r Vorg3nge, nrchr aliren, ist. e8 be- I ~c.stinunung kom- •r hier •r.ir . bespre- ilen Trockensub- 17 •r-AlaR'. e FI ` Oi ~ I! ~ I . I I N N x G' n d a „ I ~ ~ ~' ~ Il r I ~ F a F ~ ~ m a m II ~ •° F , I I o ~ ~ ~ c a''. o- aa o c- '.~ I 6 I e m ~ e C 5 [.y y V~ Ga' H:~ '~ !M1 G~l ~ .tl. ., tl OJ O l0~. CT D1 . I T~ El F E m . . m y. d Fm ~. ., '. y tl ~ o~ s ~' " F~ F' o W . i FI , e. c m ~ W L ~ ' G tl tl o e0 e! Q ~ a~ w G . e p e , ~ ~ % a~ m ~ tl ~ e y eo u'c ~ ? , o. E. W G . C YO' Op G0. . `
Page 51: fiw68c00
li r." " '` " ~ A41. ;7r . A SHARONSI:BLA'CKandC..J.B-SLpt ( fr Dept: of Food'Science, University oF 6eorgia, Ath__ enr,. t$q 301 w THE GRADING OF LOW-ESTER PECTIN FOR USE IN DESSERT GELS ~ INTRODUCTION f WITH THE. DEVELOPFIEi<1T' of im-l dl h prove owmet i-_, oxyl pectins (Anon ' 1970a) and their ihcreased:d usein a variety of gelled products (Egger, 1.970),: the need for a standardized method forr the evaluation of low-methoxyl pectins. has become increasingly important. A number of objectivee and:d subjectivee tests ofa destructivee orr nondestructive : nature havee beenn used with both modeli gels and fruit juicee gels witfih vacying. ~.. degrees of success (Anon, 1947; Hills eft al.,. 1942; Langee et al.,. 1961;.Lopez: and' Li, 1968; McCready et', al., 1944; Owensets al.,, 1947, 1949): butt thee literaturee eontainss noo standard',., or generally ac- cepted! proeedurefon the evaluation oflowcster pectim gels„ or forr the establish- ment ofthegrades off the pectins used in these gels. The characteristics: of a low-methoxyl '' pectin gel aree influenced by the nature of f\\\ the pectin and by the conditions of its use: Kerlesz (1951) ,.and Doesburg (1965) reviewed the literaturee and'd discussedd theeffectsof suchfactorsh as degreee o6 esterification;, distribution: of the meth, oxyl groupss om the pectinic acid chain t and' molecular weigh.tl. Conditions em- ployed during get making.suchas calcium levels and pH of the gel were a1soincluded in theirr discussions. ' Although theree aree considerabl'e dat'a, . in the literafure concerning the effects off variouss factors upon law-methoxyl pectin -. gels„ much of~f the information is. of:little. value. The pectiasamplesare oftempoor. `, ly defined and gef-makingg procedures are not always adequatelydescribed..The use of so many instrumental'' devicesin thee gel evaluations isl confusing when com~paring, ~dabafrom varioussources: It'~ was thought that a study of the conditionsofuse.ofa ' low-methoxyl pectin gel. using awell defined''d pectirvsampleina,carefullydevel, - oped procedune would: be useful. Becausee low-metttoxyl pectin gels aree often ex- pected to have characteristics similao to. those of high-solids jellies, testingpro- cedures should preferably be analbgous to. , those used in the case of high~solidsjellies. L-ow-methoxyl. peotinss are fre- f quently used'd in gelled dessertt products` and it seemed therefore appropriate to. usee these testiing procedures on gels hav- ing:a firmness andsteenetF, clnse tnrhnt Ridgefimeter plcx, I®:.-vli6A ..- „-6 s, s r_ I 04 standardjcllyglasces.supplied wsth the nd°clil ~. p . ... .. ..........e:..,...u.- e ..a 1< __ ...--.__.. __. fis ...,.r::,.... `,:.. ,se ~:a...er....,e-. -_-._ . _1 . . .,.c I L•4:T verted to.actual gel!sag measurements hyu.injy r r'1 Figure 1.. .. /'u Readings were takeman duplicate gcl§irum,' rnr the same batch, and.where readings'differed l+r) more.than 0.3 mm;, the gellwas.remade- Immediately after the sagg readin;. werv taken, thee gel was cut crosswise into slices uf W rJ [e~ ttt(t tkl Of 100 mm thickness and the: bottom one wav di.- t& carded. A, Marine Colloids Gel Tester (\hrinrru, Colloids, Inc., Springfield, N.J.), frAted with .6a 10:9 mm diam. plunger, wass used to meavure thee breaking pressure ofl the4~.. gell slices,. Any. reading differing by more than IOg with the nextt highest or lowest reading was discardeJ' ran i and average breaking strength valuess were cd' &t - 1119 culated foreach.duplicate.. ~ Gel preparation, A commercially available lemonn gelatin de.. ( m" sert mix: wass preparedl according to packueinstructions to use as a model. Thrs gel had i+raverage sag.of1.2.5g mm and the average break'-ingpressure was 9:56 at. I t?C. AA sample of Hi-Boly® Pectin, No. 3475. (Hi-Poly@ isarc;ic.tered's trademark. 00 Sunkist Growers, Inc., 3h<r' man.Oaks,.Calif:) was then used to prepare a g°I'with similar sagand breaking pressure measure` ments by modifying the recipe fora low.*oli.hw dessert gel suppliedd by Sunkist Growers, In.. (Anon, 1970b). However, a sag.of 12.5 mm nndd a breaking.pressure of 95g were respectively sr' the upper and:lowerrlimitsmeasurable widi [fieequipment in use. For this reason a.somew'hsr'firmer gelt having a sag of 10.5'. mm at. I 1°C and' a breaking pressure of' 126g, at t.l°C'wJ° adopted as standard.. Although somea'hJt 30 10 12 1AU m of dessert gels.. Fig, f-Re/aNonshipa between sag and ridgelim- This paper deals with some of the: etarresding, 72f,-JOURNAL OF FOOD'SCF£NCE-Volume 37 (,19721 Crnw tn~ n n_ r,nf+ a 1 t+v m. t!: more important factorsinFluencingthe firmness and breaking strength of dessert type gels.made with.low-methoxyi pectin. Further, a possiblee gradingg procedure is descri~bed.. EXPERIM1GNTAL! Gel eraluatibn ltl the evaluation of highxsterpectins,jellies madefor testing are~ muctitirmer than those which would bu made for actual use (IFT Committee,. 1959); The texturedlcharacteristics soughb in dessertt gelsare such that more infor- matiom could beobtained about't thee gel if it were evaluated unden conditionsof'use. This involvedd working with a relatively. weak gel at reduced: temperatures: Suchigelsare difficult to removee from standard! ridgelimeter glSssesand they do not stand: up:when.linally turned out- The standard: jelly glasses therefore had too be replaced!byamoresuitablecontainer_Test gels, after cooking too the: desired weigtit'~ were poured inta.Plexiglasq'cylinders (50:mm long and 44 mm ID).which had masking tape.collars wrapped around one end of eachcylihderh to exten& about Y' inm above the edge. The other end ofeach, cylinder was attached to a sheetof pl2stic wrapp w7fhi a small amount of silicon greaselo prevent leakage.. Afterr pouring, the gels were covered'd withptastic wrap and.stored - at 5 7°C for 20-22 hr. Immediately after stor- age the.covesing and tape were removed and a wire cheese cutter was used tocut awaytfie excess gel, leaving one.of a standard height. The bottomm wrap wasthens removed and the gel turned out onto a Plexiglas(D plateusing.a small spatulh' to loosem the sides. The gel was allowed to sit.for I min and was.themmeasuredfor'sag using a:SunkBst Exchange Ridgelimeter{Sunkist ~ . Temperature~,:aC < •c: j • Oer 1 dc TFi OR; kn 11: bas Lrya cor ron Fig,.2-TheintluenceoltemperatureansagfPf t _Fig' and breaAing presaure.
Page 52: fiw68c00
New1hicken9ngpasteforvat'dyeprihting., N;'It'.Ilalsvn. 7ekslil: Tboui.17;, No..$, a5-4(l!1L7)-l'cctinglucTnir ' '- sugnr inrlustryy waste, artd tlie.glucoLtuincd from alc..distil- . lery'resirfues, are succasafrdl¢. nserl.nsa thickeuiirg paste in~' v:rtsl.ye.printiug iusteaQof eurrcutly used foodstufTs, starch, dcstrin; cGC. L'. IInrabash ~ 14152f Comnooents of tobacco plhnt structure. Ria~,-1'. C.; Viart, Pierre (Fr.): Ann. Tab., Seet..1 1971, 1'f,l31-42 .(k'k). Such phps. propertiess of tobacco as hygroscopicity; -elasticity, and filling: pov:err may ba related too the structural or :• polymeric components present in the leaf. Anal. methods for . tlhesesubstances must be developed. All cellulose fractions are called holoeeilulose (1), deuned' as all polymers with a pyrun atructure. To dl•tn. 1'1 the tobacco is chlorinated with CL+. The cNloroli.gnia formed iss extd:by ethanolamine:The. residue is '•dried and weighed. (1'ectinss are detdl by' extg. the tobacco with, a, aq, EDTA.. Thee ext. is sapond!: and'~ h•dtolyzedd n•ith, pectinase-,. -•oThe resulting galacturonic acid is rietcl. calorimetrically by . neection of the furfural produced in anH:SD; medium nitFi. -',tarbazole. A. Ni: Gottacho , /'9'hi8rcitfng.egcnts used in.pharmacy. ClrarlesIi. lt- ccker (Uhiw of p7orida, Gautesville): Anr. Profess. Pharmaaxt r ~ 20y.939-44',.9&7(10&t):-Disadvantages and advantages, ', pbarmaccutical uses, and elasses.ofthickcuingngcnts are discussed. The propertiesof'acacia, tragacanth,. Icish ~ moss,.pectin,.kara,va„locust bean, buntonite, Vregurn, No carbozymetlrylcelluluse, Kelcloid, Hlvanol,. Clear PloJstarcly - corn-hyslroxypropyl %R432, methylcel]ulosq. Cellosim, ° A1gin,..and gelatfir are presented. Id. AS.. Burlhge. / • Sorption of waten vapor by caltium pectate. Fredcrick.b. W -B'. ntelhcim and David. 13. Vohnan (Univ., of'.. C:rlifmni.r, avts , . Polymer Sii. 24„435-8(1f157).-A stud ~ f tl%.+ mechanism of1I_O vapor sorptiortof Ca.pectatrslluNud tlrne . ' the adsorption isotherm began to.rise sliarply at a lnwr"t•-, 1- tive vappresstae (P/P, = 0.25); this indiu-rted tlcit tbe ..Ca.bonrled pnlygalactluonide chaincanuot allnntc l.ur'^ f~r i nos. of multilayers and the soln. process starts at a n•kr rirvb" ' low moisture content. The data: conFrmthe exiacncc• I•t 1 "C'a bridges,"' at least'..in the solid ctate, and the facl lll Lt. - . tliese contribute considerahlyto the restricbinn nf, tlierfurll- ,.ingoftlfepol>nner: • Aalph,h7..4hasll,t-r , - ~ 5GGgu Grading or low-estcr pectin for usa In dessert' gels. Sharnn A.; Smit,. C. Jl B: (PJep. Fnod! Sci.,. Univ, a,. Athens;. Ga.). J: F'ood'Sci., 1972 38(5), 7>li-SL (F.ng)~L ttd'g gel making p:ocedure, wittnnecessary moddicatiims, was used to det. offect', of temp:,, pectin concn.,.eonking time, pCl, and Ca level on sag and breaking presvurevalues ofdesscrl type gels ', mtdewith, a low-URI'e pcclim (Hi:-1'oly I'ectin , O69e content -' 5.5%a,. galaotinonic acid'.level 06.1%, nml.,wt. 155,000). The gels . ~ soften with, increasing temp.; ap a const: level was increasee in ' pectin eoncri.. gave a firmrq slrnnger gel. ~Cith, extcnded cooking ~!Yime,.sagincreusedand'breakingpressuredeereased.. At'aiGaed -, Ca tmpoctia ratio, a max. breaking pressure was obtained.at pf1 3:Annd a min. vng at pH :I'.8-317. At 20D mg CIa"/g pcctin, gels had high sagand lnwbrcaking pressttn•s showing:insufticicnt Cn; ' incrensing Ca to 40 mg/g increased hreaking pressure.tn a tnnz. beynndd which more Ca gnve a decrease. Increasing Ca to 50 . mg/ggave asharp: decrease in sag; s;tg.decreased',elighalyg beyond -•' this point and a min., was. olrtnined nt fiW mg/g. A suggested ; grndingg methrdi iocorporates both ang and breaking pressure " . - mcnsnrcrnenta !
Page 53: fiw68c00
but- alsn TAII C•E.B.-Analyses of CLl nesa •dobaecos than ctins Grade ffiCIIANT1itVG'. KWEICH6W . 1~ A1/3 A II/4 A 11116 ~ ~ A1/3 A..II116 ~ ' :ater icof . Galacturonic acid ass anhydride % , dry' . matter . .. ~~ - . . . 11.93 ~ 12.08 11.0.~ ~~ 12.12 i 112.06 ( relS- ntu riofy zring :igar nent . insoluble galacturonic . aci d as enhydHdq total galacturonioaci '. d , ' Suluble.gal'acturonic acid a s .anhydrid6; % total!galacturonic acid . . `-. 75.4 4.6. ..~ 74•9 3~.•1 ~ 78.0. 22•0 . . ~ 76.1 ~ 23~,9 ~ 74,9'~ 5•1'~. ated _ Prctinn mcthoayl'~, groups us tltethanoll '., ~ ~ - ~ . , _ .. ~ . . ~~ .. . ~ ,naf_. drymatter ~ , .. ~~. ,,~... 0•683 0.647 0•648. 0.396 0~.540~ ~.~ ... . .. _. .. . . dhr rf Pectin methoxyL' groups Aa % total gal'acturonic acid - . . 3~.74 5.36 - -~ 5.89~ - , 4.89 . ~ . 4.•4g~ .i : . . . ,. . ~. Degrea of eaterification 31i•6 29~.5 ~ ~ 32 4 ~ ~ . ~ 26 9 : 24 6 . . . . . I )D TABL13 9.-Analysess of Imported Cigar Tobaccos Java Tobacco . Havana Tobacco, - Wrappen . . ~ .. . . I II I HI .~ IV~ ~ . .. ~ . ~ Grade -. ,-~ Wmpper Binder Filler Filter Fait~ Poor , ~ _-- and.Hinder' ~ Quality Quality ality .9 590 ~~Gatacturonlcacidasanhydnid'e%dry~matter 16.17 15,89 15.60 . 15.64 ~~ IL.94 ~ I3•26 ' . ~ ~ Insoluble galacturoniaacid as~.anhydridq •.'~. ' ~ ~ - -- -_---~ ~ . tqtalgalacturonicacid~ , ...85~.g ~~ 85~~.•3~~ ~ -~ 83_8'~ ~ 84.2~ ~-~82•2. 81-8~ ~ ~. ~ Soluble~~e gatacturonic acid ass anhydrid'q ~ % ` total'~galactaronioacid'~. 14~-7' `~15-2'. ; 13.8~. ~~ 17•8 I8•2~ , . ~~- Pectin.melhoxyl~~grouDs~.asmethanol, •/..dry tn attee _~ _ ..,... ._ 0•G17 0.15~1 ~~ 0•27Z 0313. .•0.250i.. 0.243~~.~ ~ ': Peelin metboayl'groups~~.as %:total galactur-~~~ onie.acid. _ - ~ . . . 0:73 0~-95 1.78 ~ 2.A0 2.09' 1.93 ~.~ ~-Degree.of esteriflcation 4•0~. 5~•.2~ 9•g 11.0: 11.5 I _,_JO•I' ` ,. .The.pectias.examined.thus~.ranged In molecular' pectin content is Inversely related'to quatity,, as weight from t49,0f10i to 280,1100.Contraryw sqwrted(1, 10);.in mosUca.ccs there.is no.signi6- IDBtr'a findings, the motecular weighls.from theeantdiftirencebetween grades or the same type. dgar tobaccoo in the praent work were rother-Thus no connecttowbetansewpectin eontent and Ibwer tham kom:m cutting tobacco. We coneludEs tobsax qua]ityeouidy be established'. Ikmn our work that although in certain eases the/ - 1• 469 r r, ,*«,qt..•w^ Q5 a
Page 54: fiw68c00
• ABSDlt0.CTs' WILSON. C. M. Cell wall carbohydrates in tobacco pith paren- chyma as'affected by boron deficiency'& by growthin tissue . cttlture. Plant Plrysiol. 3fi(3):33fi-41,, May 1961. FY. !J f ttables. QK1 P6 ; tainedvariable amounts of:protein, ash, and adsorbed.water.The.'d walllsfrotn young. tissue contained lesscelYulose and less;pectic . ' substances, btit more'gaiactan..than mature tissue, Boromdefilci- ' ' ency',causedamarked'increaseinAhe.total,amountofcellwall. • ; material accompanied by a drop in.the relative galactan conteat: Boron'deficiencycausednogreat.shift.intherelative.amountsof . ', either the pectic substances or cellulose,., except that the amounts z::: in youngg deficient tissue were increased toward the: levelss found '. 'in' maturenormaI tissue.. Pith.tissue.in sterilee culturee wass stim- . ttlated.to. expand without cell divisionby adding. IlAAto'the medi'- wn. Cell walls from~ tissues which had more than doubled in size contained a lower proportionof cellulose while the percentage of . ,. araban was increased'. The cellu),'osecont'ent was lowest ingiow- • . . ing tissues. The.relativelygreat.changes.e in galactan and araban _oontentssuggested.that changes in these poiysaccharides might be related to the physiological condition of the primaryeelll.walL CFrom summary) 1941,. The compositionof the cell wall of tobacco pith tissue was deter- mined mined by hydrolyzing the wall and determi'ning the sugars re- leased. leased. The cell.wall fraction typically contained 25-30% cell'u- I lose, about 20% pectic substances, 8% galactan, 5% araban, and ":lessthan 2%a~xylan andd rliamnose.. Tliee isolated'walll also con- 7-/0l. 6; (iAP1 2) ~ 2291BfResearch on pyrolysis o[ natural substauces. 1. Pyrolysis of pectin. 2amorani„ .Rrturo; Roda„ Oiuliano7 . lanzarini, Gaetano (Raj. Cfnm., Ihd., Univ. Bolhgna, Roingna, .. - Ita1y). Ind. Agr. 1971, 99(2), 3'r41. (Ital).. Nine samples of .pcctin„u•n-galacturoriic'.acidl and, its Me ester were submitted too ditferent.eonditionsofpyroiysis and gas cbromatog. in order to. ' obtain characteristic pyrographs. The.intensity of some'peaks. ' - could hecorrelhted with.thed'egrca.oflnethylation of'tbe pectiu,. 0 and the presence or absence ofl other peaks with the esterificaUon O .. of.carbosylic groups, but it was not possiblee to obtain analogota~, ' • correlations with thedegree ofpolymnf of the pyrolyzed compds. I AnnttemptwasalSomadetoidentifysimplesnbstancesoriginated ~ '_ during.pyrolysis, such.asHCIlO, HCOfMe,.Ci14:CIlCFIO; and W MeOfil. J. M_ de.. i3ucren ~ . . . . . . _ _ ~. .~ _2ITKa, V.; f2QSTX, J. SpeBtrophotometrische. 445 . Bestimmune:desPektins und begleit'ender Polysaccaride. - (Spectrophotometricdetermination of pectin.andassociat'ed . - polysaccharides:) Nahrung'5(5):49.1-505; 1961.. graphs, illus., tables. (German) (NCS) 1' A spectrophotometric: method for the simultaneous da=termination of araban, galaetan,and.peetin.is described.Themethod'is based onn the determination of the VJabsorptionSpectlra of the reaction -, , products of these polysaccharides or their corresponding mooo- saccFiarides with sulfuric acid (90% . w/w; heating for 5urin on the~ ... boiling'water bath). The: result'ss obtained by this method.for pec- ~, ti& have been elleclted:by titrimetrlc andldecarboxyEationn meth- ods. hraban ha s been determined by paper ehromatograpity'after ~ partiall.hydrolysis. GaLletan.hasbeen dLtertnined by treeelectro- phoresis in, boratee buffer at.pHi8.Z. The fractions obtained by thefiee ellectrophoresi's of'thepechin product solution havee been'sep- i' arated.and identified. The movablefract~ion contains pectin and arabany, the immovablelractiomconsistsof' galactan. Tlie results' - of.t'hese methods corresponded well withh those of the, . described :,spectrophotometrie'.metlWd.e aFrnm Rnr.li,ah cnmmnrvl'. 4d5 -
Page 55: fiw68c00
240i CbrsnevTin PrnTai.-Und Wer.Te.nMm.asxtuuxn ]9f3„? i1 I I , lichs6 weitgehcnde, aber schonende Txtaaktion der Pektinstoffe aus delu Tabak gewH7inleist!em ]:ii7c d'nrkte Isolicitrng des Proto-Pektins a.us delu Pflanzemnaterial iists car niclit moglich, aber auf Ccund von Untersuehun- gen an den durch Hy drol3+se. abbesl altcnen Brnclist icken konnen wichtige Ruekschliisse gezogen werden. 11.eitcrhinn bcstin mt'en wir das ]14olekula.rge- wicht der isodierten P'ektine. Wersuchsm.n6creal za ul L'Infersuclcunq.sveellzod'idc Die Untersuchungpn an der waehseuden Tabalchflanze fuhrten svir mit den Sorten Ergo (Sclmcideguttabak), Havana He (2igarrentabak) und einemeehten Vi'rcgin (t?irgin 232) durch. Diese 7nirc]cn miter gleichen St.andort- und Anbaubedingungen auf cinem Vcrsnclisfold der Station unseres Inst.i- tutes in.Dresden-Zscliieren angebaut. In jeweils 3 Eru.testufen (29.7., 20. 8, mnd S9l 9.): sind Blatter im iiberreifei, reifen unrl um•cifen Zustand entnomimen worden. Dabei venstehen. ;•ir unter „iiberveif" und ,,rcif" beim Ergo das tiberwiegend gelbe Blatt mit braimer Spitze bzw. das gelbgrihie Blatt:,; beim Havana Itee und Virgin 232' das hellgrune Blatt mit gelben Flecken bzw. das von dunkelgiiin nach hel]grun sich vcrfarbende Bl'a.tt. Vmu den Tabaksorten Hiavana IIo tmd Ergo sind auch Pflanzen im SetzIii gssta- dium zu den Untersuchunaen.herangezogemnvorden. Fiir die Fixierung,des griinen Blattmaterials salalten wir das Verfahren der Temheraturbehand- ]t ng, obwohl wir auf Crund anderer Untcrsnehungen Ncu(3ten [8, 9], da.13 dadur-ch gcwisse VerSiidt;rungen vor siclr gehen. L+'iiie Cefrier-Vakuum- Trocknungsan7agc, die cine oi.nvandfreie Fixierung ermoglieht,, stand a. Z. t iiicht zur Verfiignng. Infolgedessen behandelten wir das frisch geerntete ' Tabal:blattmtiterial zn-ecks Inaktivierung dbr Enzyme mit einer Temperatur von 70-80 °C mtd t.roekneten es anschl'ieBend bei 40 °C' unter LuftumNral- zung vo]lstiindig. Als Versuclismaterial'fiii• die'Durchfiihrnng der Untersilehungen beziiglich des Verhaltens der Pektine im Tabak .z-ahrend der Tiocknung und Fermen- tation sind jcweils technisc]2 reife B15.bter der 2. Erntestnfe zur Verwendung gekonvnen. Dicse Versuche wurden an den Tabacsortem Ergo und Idavana. IIe vorgenommen: Vom Ergo-Tabak kam cin Teil ini Hang, ein anderer in~ der IIcif3hiftanPage zur Trocknung, w8hrend fiii• Havana IIc nur. die erstere. Behandlungsart' gewiihlt wurde. ., Zur Fermentation der Versuchstabake sind folgende Verfahren angewen- detvs-orden~: ~ 1. Fiir „F•rgo" heifSluftgetrocknet: \17armraum-herment;ation nach~ P~edrying-Behandhrng I 1 a ( t I!I geh, ess I han faht t, eine / Qua I ang { R '` 1 gc et K F. i ke '{ S ~ L: ! Z ~ der ter] angc 0 i Sr ' A., X- Ie ~, CI 0! Sc Q cAi ~T--..-..R...,.-- ,..~._T
Page 56: fiw68c00
t . t 248 Cossxnr•rna Pi'niac. und.ll'eoxen lltocnr.nIr.vEn: 1963, 2'. f den iiberrmfen Blfittern. Im Gcgcrosatz dazu nehmen die Werte der 2..md 111{{{'j. besondbrs der 3. is'rntestufe von iuborreif"nach „iinrcif'° doutl'ich ab. Etan i Itann also eine 1'!Ihercinstimmung mit den Untersuchungscrgcbnissen a ((m Tabak seIbst erkennen.. ,, Die 1liolel.ulvgeuichta nehmen in der 1. Erntestufe voni „iiberreif" iiber r neif!" nach unreif" hin zu, «rahrend sic s ch in der 2. mid 3, l,eradc:umge I}- kehrt verlhnlten. 1`'ie man erkennen kann, sind die Wertunteischiede zwi> schen den Prohen iiinerhalb ciner Erntestufe dentlich ausgepragt. Vergleicht ( man daruber ]tinaus noch die Wcrte eiii- und dcsselben Reifegrades in. den ,! versehiedenen Erntestmfeny so.kami man - mit einer liusnahure, und z.r•ar bei derr iaireifen Piobe.der zweiten 7Trntestufe -eine Zimadime des 11Ioleku- i large+-ichtes mit stcigender Insertionshohe beobachten.,Rsist anzunchmen,/, daB sich das: Protopektin.in der Pflanze in gleicher Weise verhalt. Dies i tisiirde bcdeuten, daB die Pektinmolekiile in den oberen Blattcrn grol3er sind als in den unteren;, wobei auch hier die Reifegi ade fiu die Ausbildung einen rvesentliehen EinfluB ausiiben: diirften. ~ Der ermittelte Veresterungsgrid der isolierten Pektine ist' gegenuber d'em III/ der entsprechendeu Tabakproben (Tab; 2, SoiteTrgo) erhSht. Jedoch kommt zum 4usdruck; daf3 der Veresterungsgrad i:m iiberreifen Blatt im Vergleich zu den beiden anderen R'eifegraden im allgemeinen niedriger liegt In Be- statigTmg zu den Untersucluurgen~ im 9Pabak• selbst kann auch bier gesagt werden, d.ti(3 lceine n-eiteren eindcutigeny tendenzmal3igen 7.usammenhange bestehen. j Die Untersueltung der isolierten Pektiile der Tabaksorte Urgo ergab dem Il- nach, daB ihr lfolekulargeiricht mit zunehmenelem Reifegrad grof3er wird. A'ur in der ersten Erntestufe zeigte sich benni ilbergang von ,,reif ` zu „iiber- ~ reif" eine Abna]rme. Bci Zug •undelegpng, ein tmd desselbeni Reifegrades , de veiscliiedenen Erntestufen ist cine tcndenzmal3ige Zmialune mit stei- gender Biceitionshohe festzustellen. Der Veresterungsgrad der isolievte !y/n Pektine imieihalb ciner Rrntestufe l'iegt bei deni uberreifen B1dtt.ern imi all- d i l b i d' gememen nte gern a. r s e en 2 anderen Reifeggaden. Untersucllungen • an unterrsc#iiedlichh getrockneten und fermentierten T'abaken. ~ Bei den Untersuchungen an Tabakbl3ttern, die vcrschiedenen Behand- ~ lungM unterzogen wiirden und auf Grund' biocheuiisclher Vorgiinge mehr ~ oder Nseniger starke Trockensubstanz-Veranderungen erfad ren, ist es be- kam tlioh eifordcrlich, dies bei dar Berechmnrg der. zur Bestinunung kom- menden Shabstanz zu beriicksichtige . Zur Beurteilung der hier zu bc;pre- ' chenilen Tsrgebnisse:werden duliadb die auf die korrigierten Tiockensub- ~ 194' L7
Page 57: fiw68c00
RASMUSSEN-LEAF 223 ~ cations are competing with calcium, then the amount well as the quantity of.water-soluble calcium, Thus, oluble calcium should be greater in the tender there may be equall quantities of calcium in the sum U yl nalysis of' the. aqueous extracts indicated of pectate, erystall„ and soluble calcium in both pg of calcium per gram dry weight of'tender tender and normal leaves, but there is less in the ka{, and only 1,760 µg, of. calcium per grant dry pectate of the tender ones. ~isht of'normal leaf, or 3215oJo less soluble calcium - In conclusion, not only d'oes the well-known~ and'ip tlte normal leaf. This diSerence partially accounts --drastic enzymatic hydrolysis of pectin~ separate for the apparent. contradiction in the amount of -,tissues into cells, but the mere displacement of calciunt revealed by silver replacement and.the totali calcium from pectate evidently weakens tissue. rslcium content revealed by quantitative analysis.. Dilferent solubility,, an explanation of the . differ-tttce between the silver andi quantitative tests, is. " " crystal5: These cpnfirmedI by the appearance of rnstals are abundant in Connecticut shade-grown abacco and are composed of the' calcium salts of organic acids (GanxERy 19515. They appear to be Ntore abundant in tender than in normal leaves, ]qtsumably, displacement of' calcium from pectate by contpeti'rtg,cations increases crystal formation as From thisfact,s onee would predictt that flooding the tissue with abundant calk:ium.should.strengthen the tissue; this pnediction has been tested, and the out- come will be reported in a subsequent artilcle. . . Acknowledgments The.assistance of Dr:. D. E. PEASLEE in making, soluble-calcium determinations and of'the,Analytical Chemistry Department for leaf analysis is gratefully acknowledgeds LITERATURE. CITED AqvrxsEN, Pt j..I963; Tender tobacco. Cigar Manufacturers Ass., New York. (Abstr.)', _ - FJap, K. 1953. Plant anatomy. Wiley, NewYork.. - (,aavea, W. W. 1951. Thee productionn of tobacco. Blakiston.. Co.,.NewYork. Guyon; G. 1952. Microscopic bistachemistry,, principles and. practice. Univ:Chicago Press, Chicago. )pxssN;W:A. 1962. Botanical histoeNemisery. Freeman de Co.,SanFranrisco. ' )rn~N, W. A., aad M: AsamN. 1960. The composition of'the Bor. Gdz. 12a(3-7)::223-229:.1967. developing.primary wall in anion root tip cells. 1..Quantita- tive analyses. Plant Pbysiol. 35:313-323.. joaANSEN, D.A...195oi Plant'embryology. Chron. Bot: Co:,, Waltham, Mass.. Pa.tst.EE, D:, E. 1964. Calorimetric determinatioan of ealcium.m in soill extracts:. Soil Sci. 97:248-251.. RASMUSSEN, H. P:1965. Chemical and'physiological change.sassooiated with.h abscission layer formation in thebean(Phaseafus ordgarisL., Cv. Contender)i Ph.D. thesis. Michigan. State Univy, East Lansing. DEVELOPMENT OF TEIE OVULE AND MEGAGAMETOPII'YTE IN WISTERIA SiNENSIS DAVID'8. REMBERT,, JR 1. .. . . Department.of Botany„Universityof Kentucky, Lexington ' ABSTRACT.. . . Eighlcampylotropous ovulesinitiate development trom~.primardiaon the.placental.ridge in the ovary of' B'Fsttaiaa si.nensis Sweet. Pntegumentary primordia arise from the nucellar mass, and the ovuies arch toward the stylar region of the ovary. Usually a,hypodermal archesporial celllgives rise to a primary sporogenous eelll whichh enlarges to form thre megasporocyte:. Subseqpent meiotic divisionsshow that monosporic or bisporicmegagamatogenesis can occur. Three antipodalsrorganize in theebalazal region.but rapidly dis- . ' lntegratt: The synerg,dsfurm im the micropylar region of.the embryo sac and'd undergo dissolution befure fertiliratian, leaving the egg cell andifusedlpolarnudei present.at fertilization..The ovulcat maturity has a miaopylar canal:wh,ichconsists of'an exostome; a.mesostome,.and an endostome. 'Introductioa 1Visleria sinerais Sweet, a woody vine of the fanli- 1rLeguminosaq,is the most widely eultivated.speciesf flte genus in the United States: 6Pisleria sinensis xltibits the. typical papilionaceouscorolla and' has iad'elphous stamens: The purpose of this investiga- 16n is to give a detailed description of the ovule and t Present address:. Department of Biology„ University of aalh Carolina„ Columbia, South Carolina 29208, . megagametophyte. development and to compareandl contrast this development with that of other species in the same family. These: differences and similarities are of taxonomic iinportance. Material and methods Flowers ofFRisleria sin:ensis were collected at several pointsons thee campus of the [7ttiversity'of South Carolina during the months of Marchl. April, an& early May. Whole flowers, or in some cases the i
Page 58: fiw68c00
C.,o' ~(/s ; ~. A'. -Y2 l ~fps:3) fp • eBsTBt+crs'r ~Gelatiua of' pectiu. I. Irreversible changee in pectin during gelation. 11. Orn yanov,. G.. 1"<urukolev„ nnd' hr. ' Marinov. Anarmire fne, sce.-/,nys, rt',n;uUr...(,Snfrr), Clremii 47, 09-90(l:Cu^)(Gennan swumary).-Gcl (0.5g.)'5 frmn r • applbpectim(I~)wasdissolved'in-0'nrC.warnrH:Cli,thcr•oln. - ' boiled to.initial v:t.., the surface covered with liquid para0iu audleft.togcl; 34hrs..latcrthegclstrength.audtlrerelative4 viscos$yof its aq; sofitL . were detd. This process was ree peated:severulltines. The resulls.show that strengtll nnd- ~ viscositydecrease with~ repetition of' gelatiom. Besides _ ihydrolysis of I, homopolar bonding ttirmrgh Ihctone and . . cstel formation could be respo~asible forr the thcrmaffy , `frreversible change. 11. ., Effect of degree of estcrification , upon gelation. Jln'd.91-10u.-Above 50% esteritiaatimt '(iI)) thegel strength (III) reaches a max. at 64 %, the gcla. - tfbtnrate (IV)Accrcases betwecn. 52 and 61% and increasess afiovic that, and the oplimum acidity increases with II. Befosv50% D:-1'Iliand.IVdependuportCacontcnq belo+v- II pectincannot beesterificd in the abseneeof Ca~ . G'.Meguetian. / •J Thoehemical: composition of certain grades of Puerto ' Bicantobacco, Type 46. Max Ph~ill~i+ s, Frank B. Wi1L~inson,- a^.d Aubrey M. Bacot (ULS. ISep[. of Agr., \l!ashington, D.C.). J. Assoc. OjJit. AgF: Cliernists361 .1457-G5(i0-a3)'.- The percentageswere detd. of the following.constituents (all ealcd. on amoistnre-free and sand-free basis) of 13 grades of ~ Type~4Gtobaccofromwhich.lhemidiibshadbeenremoved: I ash, water-sol. and water•fnsof..aslu. Cl,, petroleum ether extract4ves,: total N, nitrate?I,. ammonia N, protein,, nicor tine, total veducing.g substances (as glucosc), pectic sub- stances, pentosans, cellulose, lignin, and oxalic, citric, and 1'-~ : malicacids:.. The percentages of.ashiwater-solf ash,ally.of the water-soll ash, and'pectic acid and'd pectates werngralter in the light-bodicd grades (I), thann in tiie ]icavy-bodied grades-(31); wlrilethe reverse was true with cespcctt to the , percentages.of total N, mnnronia N,. protein, and nicotitre. ~ lit tfieX group of grades, the. perccntages af' ash6 , wate- , sol. ash, andd thealky.,of the svatcr-sol.. ashh were alsogreater . in.L thasr iaPl, while nicotute washigher in II. All 13 grades - were free of'pectin orr svater-sol. pectinic acids. Br all csses, . peetic acid was tlhe principal pectic substance present. - _ L. L• Ramsey The chemical'.composfti6n of certain grades of type li,, . American flue-curedd tobacco.. Relatiorrshipof composi- tien tb'grade characterislics:. Mhx I'hilli c.mrd. Aubrey M- . Bacot Q.U.S,. Dept. of Agr., Ilrachmgtou, D.C.). J. As- ' roc. Offic. Agr. CLcurtits 36, 50t-84(',t9o9)'.-The pcrccnt- ages ofitheiollowing,consntuents(alllealcdf on a moisture- free and sand-frer.basis) of.tu elvegradcs otType 11 tobacco front which thernidtibs had been removed. were detd.:- ash, pett. ether„cther andalc. extractivcsy.total.N, proteiby nicotine, tot:Aredircingl subslances, reducing sugars, sucrosr„ dextrin;, starch, pcetic substances,. pentosans, cef- lulose;, lignin, nrethoxyl in lignirr and ether and esterr mettr- t uxyl„polyplienols, tarmins,.oxalic, citric,.and 1-malic acidfi, and resinss and wnxes. Tile rcl.ltionsbctwcem the~several and the oCthe grades wfthin a group alit constitkicnts qn r y , , as detd. by tlrc: subjective ructhods of tobacco. judges, are ' pointedoutl..: Ikisshownthattheqrality'withincaclrgronp_." Qof the.L colbred grades appearstb he directly rclhtedd to the .4 .. ratio.ofthepercentageofredttcingsugarstothesmnoftlre ~ pnrcentages of oxalic and citric acids„ L. L. Ramsey ~~ ~'
Page 59: fiw68c00
TAdLE'o.-Ptopertlex or pectlns Isnfated from leatev. at reapiitgandlaflercurbng and Cermenting :n- rn nJ n dS iic 9' yy in a or to Lit :d' of sf. ,n d• s ER6O Isolated pectin calculatedl as galacturonic acid atdtydride f %%lotall Specific. • Sample. I dry galacturonic visraxily _ . , matter acid' , ERGO At.reaping6.345.5 '. .145 Flue.curcd . - 6.3 48.1 - 122 Aircured 6.1 48.7 '. 112 Fluee cured, redried' and hot-room ' fermentcd " 6.0' . 45.5119 Air cured, rcdried and'~ hot-room', 1 ~ fermcnt'ed -~ -' ' 6~.0 -' ~ 46,3~ Air, curedland.forecd fermentedl 6.0 46.8'~ Air~eured.and'~.fermcntedlin piles ~ . HAVAMA..11C At reaping 7.7 . . ~ 57.3' Flue cured Aircured: 7-11 56.0~ Fhree cured, redriedl and'd hot-room. -- fermcnled Air cured, rcdried and hot-room. fermented - ~ ~Aircured.and: forced~~fcnnemed Aircured~and'~.fcrmentedih~piles~~. ~ 6.6~,• 53~.9 Havana lfc was anaingous;an; evengrcatert Afterguccuring II-36%, „,,, , 97 70 - 126 - 123 HAVANAIfC Mean Degree Molecular of weight esterifi-cation 246,000 19.2 207,000 30:1 190,000 - 27.2 202,000 - 27.8 165,000 29.0 1'19,000 1'A9 2t4,000 - 29.3 2119,000 37.5 reduced by forced fermenlaliou. The.behaviour in At rcrping - 1.37% ',aeetioacid .:; pectins isolat<d' frnmErgo gavee a positive test for acetyl groups were reduced only byrairy turing and 6) isprobablyattributablc lo Iransfer of mcthoxyl After air curing and groupslotlieisnlatufpectimfraction. '. f,orcedlfermentalioo 1.09y.„ Thus a demclMytulinn process occurs under the The acetic acideontents of Ihee tobacco pectinsconditions offorcedand pile-fermenlntion. The wem lower than found by Kriwousow(3). Pectin, reduction in exleri8caliomduring fermentation in I After air curing , 1i,15%, „ u piles. "-- After 0ue curing, redrying Curingproditcedg no change Ih, content of ineth. and'~ hot-room fermentation. 1.35 %, „ oxyf groups of.tobacco (Table 5). Thc incrcasein After air curing, rcdrying degree of esterification obscrved: in euring, (Table and hot-room fermentation 1..115'/,' „ „ .' acetyllgroups. 13oth W'ahI (77) .and Kriwousow (3) by forced fcnmentatiom.j teported acetic acidin tobaccoo peclins. We con- firmed firrned dmTt ncetyl groupss were present in the isolated pectins,. thee acetic acid content' varyiug from1.37, to 11.09 per eent'rclated tu galacluronic anhydridd. 467
Page 60: fiw68c00
. .IlAllnn 1DG3; 2 C WnVei a relation b'et\feen N•. }'+•^ moro intensive tpe. . NOthatl the IOKegt fcnncntnl.cd tqboccos. A.. .t hc nxognieed.,,though in ~edri.intinns were gcncrully tnbnccasnor those ~rngmmolecnlar. sizcs could n 6uth cigarette and.cigard nmg von Calakturonsaunt a. -Forsch. SO, 347 (1999), s'.im Tabak:Tabak-Farsch. nrarbcitung„ S. 38. Berlin:. 3i7. Tfnskna 1948- flmr Ccist.. lak. Sudd., Tabnkztg: 'a0, tznngund'„Stnrke"'von1956)~ Relntions entre In. 31%. Aetes du Dcuxii•mcG+niehungen.zwischen dern dce.Raudics. Bcr.Inst..'LC .. CORESTA SnR l-„ rchungsmethodik des YPa- rensm.,IInters. n. -Fmsclt. kpcktine. Ber. Inst.. Ta- •_, Justus Liebigs Ann. d. sr und Tnliakrippen., 7.. von Pektinstoffen. Bcr. IPuktinsloffe:, IT'I6 lllitt'ri- Il.. CCS. G9', 2537(193(1). ;r ~n der Pektinchemie. 19G3, 2' Tabniypryyino-tmdidcren Rinfln8 nuf die TabnkqualithiA 263~ 1gj.1ftNOLHfN,F..A nn'.1;'s`rOGL\fERT:,TrberdenERSlgs,iLLICS{dlaltldCF.Pektlllsder7neker- rube. Mnkromolcl;ni:ra Chmn. 2,. 77 (1918).1G., PYnixr,A7.: (Jherdi- .G.hakfennenbltGon..II.?tfitteilung.. Die Roinasuhenls Nrbrgleichs. grundlagc zur BerrAnungderTrockcnsubstanzahnaliune. Z. I:ebensm.-Vntcrs.u. -Forsch: 95,.233 (1;152)'.. 405. Rntvousov, d: '.41: QZuantitative.Bestiinmune der Pektinst'offe. Tabak (russ.).D2, Nr: 4,, 16 ~ (1951):. 21.. Souuvctc, A.. A. o~. F.oc.. oit., Sl~ 3Gl). ~ „~,,~_...... Zr .
Page 61: fiw68c00
~. ^ • I .f~ i • ~ LITERATURE (1)Bnuckner;,N. (11936):DkBicefiemic dcsTah.iks und dctTabakvcrarbeitung. 5.59. Bedin:Paul Parcy. (2) DSrr, W:,(1949). NeuaAnschauungon ubcr das Pcklin imTabak. Sudd'. Tabakuilung 59,Nr. 13 und . .. 14.. (3)Kiiwousow,J. N. (1951). Quantitalive BtstimmungderP6klinstoRc..Tabak (Russ.)12„1d.4, 5.16. (4)Pfaiss,W:(1i9t9)..Ut}crdcnMNhylhlkoholgchaltvonTabakcniundTabakrippen.Zeilschr:funUnten. der Lebcnsmiatl 77, 272... -($)Pyriki„ C. (1951). Uber die Vabakfermentalion. 1:Mitteilung: Zeitschr. fuo 4ebensmittel-Uhters. U. -Forschl 92, 322. --.(6)! Pyriki, C.. (1959): Bezichungen zwischcn stoPoicher Zusammansetzung. und"Starkc"' von -gabaker- zeugnissen. Ber. Inst. BurTabakforschung 2,11.2,. 127 (1955). Relutionsentce la composition .. .: chimipuedutabaeellesearaettresdelafumlc.Actesd'uDeuxi2maCbngresScientifiquelnter- national du Tabae,2uin 1958;S.460:-IIezichungcn zwisehcn der chcmischcn Zusammcnsctzung desTabaks undlden Mcrkmalen desRauches..Ber:,lnst. fur Tabaklbrschung.6, 66. .-.(7)'Pyriki, C: (1961). Methodologiede I* recherche sur le.tabac. Builetin, d'Tnformation CORESTA, I Nr.1, 1I36. (8) Pyriki, Cl und Mold'enhaaer,. W. (1962)..Zur Analytik derTabakpcktine. 8cr. fnstr fur Tabaktonch.,9, (9) Pyriki,. G: und! Muller, R. (1962). Erfahmngcn uber dic Untersuchung.smethodik des Tabaks. Die Nahrung.6, 166, (10) Schmuck,A.A. (1948);Chcmie des Tabaks und derMachorka. S.357, Moskau. :. . (11) Schmuck,A.A. Goc. cic„S. 360. (12) Volhnert; B.,(1949). Eine Methode zur glcichzeitigen Bestimmung von Galakturonsaureund Methoxyl •inPektinpraparaten.;ZeitSchr. fur Lebensmittel'. Unters.,u: Forsch. 89, 347. (13) Wahl, R.(1950). Chemie der Pektina und Vorkommen des Pekoins im Tabak: Tabak-Forschung, Ne. 4, 7. . . . (14) Wenusch, A. Chemie dea.Tabakblalles. S. 5l. Bremen: Arthur Geist. - ! .. . . _ quaf subs follc ,.r ,.-... _.- .. 1. r "'l.. .- .., _ .' &y1 C sub whi ,. i 1 .. l1F 'tl -. , . . .... . .- 1 470 0 i qUB G (• • 7
Page 62: fiw68c00
2. Quantilali.e and rpmlitnSvedtayyes impeelina nr tobnccn duringdrying, nnd' fermentntinn The.cliangesin organic constituents occurringas aresultof d4ying.and' fcrnrentatiooeannot, be properly appreciated without correction too a d'ry niatter basis. Thc ash.cont'ent has been takcn.as a basis for comparison (5).. Table 4illustratesdhat the conOCntof galaeturo- nic acid is reduced by.0ue-curingy by 5per cent, and' ~ by air-curing by-9 per cent,.for the varictyErgo. That is to say that pant.ofthe pectin.is.calabolised so farthat it isno longer estimated asgxlactumnic -` acid'. This breakdown was, as expected,, nsone exlcnsivc in air-curing. Thc reduction in the ratio ofinsolubletosolublefraclionsofthegalacturonia acid points to qualitative changeC Hot-room fernicntation.prodi¢cdino apparent . change after either method of curing; however, forced fernrcntationof air-curcdsamples produced somc convcrsionnf insoluble to.solublc galactume sioacid without alrering.g the total amount. The experiments on Havana.llc shmvedlpracli- eally the same resuit9.. As the, variety is used as a cigar tobacco„ only, air-curingg followcdd by fer- mentatian in piles was carried out. Here tooIhe ° changes duuingcnring wxre largar thann during . fermentation but furmcntalionn fiad rather more - eRectomdegradation of pcctih. than the hot-room .pr forced fermentation used forErgn.. Table.5shows the changes, iir pectin rnethoxyl groups and' degrec of estcrifiu-ltion dururgg curing and femrenlation. Neither Oue- nor air-curing resulted'.imanyappreeiablequantitativechangein pectin methoxy6 groups,.but both produced smill qualimtive changes cxpre.scal: as a slight increase in the degree of astcrilicrtinm Tohaccno fermented in Ihe hot-rpom was scurcelydiRerenCfrnmthat.. Ouc-curcd,butair-curcd tobacco farmented imthe snme way showed a reduction in methoxyl groups and dcgree of esterifieatiom The reductionby forced fermentalioo was markedly larger; and'yet'd more cxtcnsive dcmcthylation occurned during, femsentatiomof Havana tlc in piles. It foliowsthatls thrchangcsin pcctinsduring.curing and fermen- tation dcpendlfar morr.on the treatmcnt: than oa thevariety. Tobacco. pcctins were extracted from Ergo and Havana.lic Icavescured and.fcrmcrttcd' in dilferenn ways. The resullss amm in Table 6: The amunt4reeovered, as a percentage of lotal galacturonic acid, were 45.5-4g.7 per cent. for Ergo,, and 53.9: -57,3 per cent for liavana, Ilc. Thus the yield by'the method employed was not much greaterr than, - from green Ihaf (Table 3). The measurcmonts or.specific viscosity show a reduction in all cases during.curing, especially fon Ergo. HoC-room fermentation produccd'd no fortherr change in flue-cured Ergo samples,, but, appreciablyredueed the values inn air-cured samples: Ther.reduclion~by forced fermentation of air-cured tobaccowaso stilll larger. The greatestt chain breakdownn appearcdduring farmentatiom in piles of air-cured Havana Ilc. The molecular weights were altered eorrespond- ingly. The degree or' esterification was in all cases increased by-curingbut whereas it rcmainedd unchanged by holrroomtermentation iowas greatly TABLES,-MeOroxyl groups and degree af esterifkntion in, peetins from tobacco at reaping, and l aRer amring_ and fermenfing ERGO . .. HAVANA 1i1C - Pectin metkoxyl'groups asmethanol. Degree of % dry mattcr % total esterifi- gaiacturoniacation, . acid. At. reaping . ._ 0.483 3..49 1~9,2 Flue:curcd "- -0.484 • 3.70 20.4 'Air cured 0.494 3.95 211,7 Flue cured,rednied and Ikrmented. hot-room 0.499 3,79 20.9 Air cured, redricd'and hohroont fermentedl 0.4'52 3L49 19:2 Air curl.dd andd forced fermented . 0.397 3'.to 17,1 Air cured and'fermented; in pile+ - - - pectin metfioxyl groups as methanol Degrec of % dry .%aotall esterifi- matter galaclmronie cation. acid 0.512 3181 1 21,0. -- '- 0.532 4!.19 . 23.0. - 0.224 t t 1S3'. 10.1 TA,nL ERGO AI,rcaping Fluecurcd Aircurcd'Flue cured fecmente( Air cured, femtenter Air cured a Air curcda HAVANA At reaping Flue cured Air cured Flue curec formcnte A,ircured fennentc Air curedl ; A'ircured r rcd'ucedb3 Havana I reduction i piles. Curingt oxyl grouf dcgrce of , 6) is proba groups to Thus a r condilions pectinsilco --acetyl,gror reported' a firmed th: isoSated p from 11,37 anhydride.
Page 63: fiw68c00
0 ~ _., _ .~~.. ........._. _..... 1 Tabelle G Untorsuchungen an iaolierten Poktinen aue fixiorton und naoh vers°hiedenen Verfahron getrooknctoneowie fermenticrtan Tabaken . - ' Hrgo Havana IIo Isoliartos Roinpoktin - Isolicrtes Reinpektin als Galakturonsaut•e- als Galakturonsuurc- Anhydtid . Spea Via-. Mittl r Anhydrid Spez Via.. DIittlere Yrobc k sttrttf e e Vereste- k etEat/c Vereste . o~ in ~o der ie % d. a o aceton. lfolaku- Inrgrti8a - rungagrad o in /° der in % d, p aceton. lioleku• largr60e - rungegrad Tabak- Gesamt• PektinniL. TnU alc• Gesamt-. Pektinnit. Trs. . galakturon- .. - rs. T galakturon- _ ' eaure -- saure Nach der Hnrto fixiert G,3 45,5 145 246000 1'J,2 7,7 67,3 126 214000 29,3 HoiGluftgetrocknet 6,8 48.1 122 207000 30,1 - - -. Ilang-getrooknat 6,1 48,7 112 190000 -27,2 7,1 6G,0 123 208000 37,5 Hcit3lu ft-gotroeknet, Redrying-Lohandelt, ~ 1Yarmraunt-fcnnont. 6,0 4@,6 ' 1_19 202000 27,8 - - -. - - Hang-gctrocknct, • - - ltcdrying-behandelt, . . Warinraum-ferment. G,0 4G_,8 97 166000 29,0 - Hang•getroclcnr.t, icammer-fermentiort fi,0 46,8 70 119000 17,9 - - - - - fiang,getrocknet, • ' Stapcl-fermontiert - - G,li 63,9 48 81000 13,2 ~ m v e7 w
Page 64: fiw68c00
~n. 246 CONBTANTIN.IP1•RIISI ROd NS!Al.T6g TSOLURN]GUt1R , 1GG3,0 n nieht angegebensindl, bcim unloslichen Anteil.dic glcichen Tendenzcn zeige n wie bei dem Cesvut-Guilaktutonsiinrcgcbalt_ (' Legen wii• die Resultate der'G'hbelle 2 zugrunde, so ergeben sich folgend ''e Feststellungen: , Die P¢ktinc der Bh'itter inrSotzlingsstadimn der Pflan•r,e weisen den grolS- ~ ten VcrbSlt:nis.cert zwischen. Pektin-Afcthosylgruppen und Gesamt-Galak_ ~ turonsiimregehalt auf. Somit besitzem sic den h:ochsten Vcresterrungsgrad, r' wi¢ die entsprechenden Zahlen dcr Sorten Eigo und Havana IIc zeigen. It 'i der ersten Erntestufe, van allem zxvisclien reif'° und „uberreif", finden.vir be lllfi allen 3 Taba;ksontcn die grol6ten Untersehiede. Hier liaben die reifen Blatter jcweils'dle hticlisten Gehalte an Pektimnet.hotiylgruppen, tvflhrend die iiber- ~ reifen cl hcblich klc,inere 1l'erte zeigen. PaxalOel dazu verhalt sich au.eh de ???r Verestert.ngsgrad. Daraus ist zu entmehmen„ dafS Blatter, deren biologischer / Zustand weitgchend'vorgesclu•ittcn ist, schon an der Pflanze ciine tvesent ,'- liohe DemethylFerung erfaluen• Insofeln ist hier eim'e gewisse Paralleli.tat zum VetdtaLten der Gesanit.Ctilakttn•onsitire (Tab 1) zu erkennen. In der • 2. undi 3 Erntestufe, bei de.nzn die bioloarschen Vorg3nge niclit so stark vor- geschritten waren itie inn der ersten, sind die vorerwahnten Feststellungen I niclit erkennbar.. Diee aufgetretenen. Ver5nderungen zeigcn keine eindeut~ige Tendenz. Aus den Untersuchungenn der Blatterr der wachsenden Tabakpflanze geht alEo hervor, daB die qualitativen und'Tquantitativen Vcr3ndeumrgen der Pektine im wesentlichen von d'em biologischen Zustand der Blat.ter inner- hal'lt einet j,eden Erntestufe abhangen wtd' veniger sortemndifiig bedingt sind• Auf3er den crwahnten. Untersuehungen an den Blattern dcr. wachscnden + Pflenze haben wir die Pektine der Tabaksorte Ergo isoliert -1'Iit Hilfe von ~ Viskositatsmesstmgen deracetonisclien Pektinnitratlosungettbestimnte JJJn rvir das nuttlere ;1lolektilargen•ieht sowie auf Grund des Veth'i.ltnisses der '' Pektinmethoxylgrnppen:'ztcm. Gesamt-Calakt'uronsfiure-Anh}dridd den Ver 'II- esterungsgtad. Die Isolierung der Pektine nach der bercits envahnten Weise erfolgte aus dem Tabak der lewciligen Erntestufe. Die F.rgebnisse dieser ~ >Ilntcrsnchuzigel sind aus der I•4belle 3 etsichtlich. !!!I Die 7tilenge der extrahicrtc,n Pektine bcrecllnet als Calakturonsaure- .'Inltydrid - betragt 3G,3 bis o0,2%, bezogen auf Gesamt-Calakturonssiure. j Es wsar adso nicht lnoglish, nach der angewc,ndeten Isolicnmgsmcthode mi 't kochender tLnnuoniumocalatlosung im Hlocltstfall mehr als die H&Iftc zu gewinnen. Vcrgleiclit man die Werte der cinzelnen Proben jeweils cineel:rn- testufe untcreinand'er, so sind auch.hier praktiseh die gleichen Tdndevzen festzalstellen, wie sic im Gesimtt-Galaktuaons5urcgcluilt des Ctibal'ss zu fin- den waa'•cn. In dcr crstem Erntcstufe sind die illhngen aus den reifen und un- reifen \'T2tot ial et'n a gleich gro/3 undllieocn dentdich ]roher als dicjenigen aus ~ tV ~ CID
Page 65: fiw68c00
r:UYVRNUER' der i'ckt.instoffe aus denr cs Proto-Pektins aus denu f~r nd von Untesuchun- its tickeni ]konnen wiclitigg nten wir das.3folekularge- y„nteChodi7i. k{dlanzc fiihrten wir mit F'igarrent'abak), und einem, unter gleichen St'andbrt- Icr Station unscres Insti- Is 3 Erntestufen (29: 7., en und unreifen Zusta.ndi iibcrL`eif`° und „reif" befin pitze bzw: das gelbgruiie 1leriine Blatt mib gelben h verfarliend'e Blatt. Von Pfdanzen im Setzlingssta- m: Fiir die FSnierung des der Temperaturbehand- rgen wu0ten [8, 9], dii;f3 . Eine Ccfrier-Vakuum- gg ermoglieht; stand s. Z. as frisch. geerntete ~ Snit ciner Temperatmr 40 °C unter Luftum.cal- ntersiiehungen beziiglich 11rocknung und Fermen- testufe ziu Veuwendung orten Ergo und Havana im Hang„ein, and'erer in t'ana II c nurrdie erstere ide Verfahren angewer- rndhmg 19c3, 2 Thbnkgmktine.nnrl dCren Elnf6r6 nwf die T+rbnkqpialitat. 241 2- Fur ,,Ergo" lhanggetroclaact: aJ. Wannraron-Fermcntation nvch 12edrying-IBehaiidlung b]. Kaonuter-Fernucntation 3: Fiir ,klavana IIId' hanggat.rocknetr. Stapelfermentatioti Um Fehl'er infolge eiiien lnho nogeiitat des biologisclien n+IateriaN.lvei't- gehend'st auszuschalten; kam die Tcilungsnnethodc [10] zur Ani+•endung. Da es sicb bei den einzelnen Fermentationsproben nur um relativ Ideine Dfengen handclte,jedoch nach den in der Pfavis angewendeten Bedingungen ver- fahren werden sollte, wurden die &roben zur Fermentation. in den Kern eines Ballens bzw. eines Stapels aus Tabak derselben Sorte und des gleichen Qualitatsgrades gegcben. Die Ferment.tit'ions-Bediiigungen sind nachstehend angfgelien: ` Redrying-Behandpung-1Varmira~uinfermentati~on:1 Stunde Behaudhtng in der Itedrying-1laschine, anschliel3end Ballenlaa- gprung im litarmraum bei 37-35'C und ciner rel. Luftfeuchtigkeit von etwa 75%0,.. Dauer: 15 Tage. Kam>.neafermentation: Fermentation in der,F€ammer bei 40-4o'C und einer rel. Luftfeuchtig; kcit von etwa 7a%o. Dauer: 24 Tage Stapelfermentation: Lagerung im A- und B-Stapel'-Kertr bei' einer Tabakfeuchtigkeit von etwa 23%. Die hdchstgemessene Teniperatur im. Stapel betrug G2°Ci Zur I{leirung der Frage, ob und inwiereit die Pektinstoff'o die Qualitat dea Tabake beeinflussen„ wurden Proben nachstchender liandclsqualifizicr- ter Importtabake unterscliiedlichr.r Qualitatsklassen zur Untersuchung her- angezogen:, Orient-Tabake:: . Samsun I, ]'I und PII Nevrokop I, IV und VI , Xanthi Yaka II und' IIZ'. Izmir mittl'eree undi sch.]ecbtereQualitat Chilna-Virgin-Tabake:: Schantung A I/3; A 11/4 und A II1/E Kweichow A 1/3 und A IIIfB O O
Page 66: fiw68c00
242 CoSeTA\9119 PSRIRf und WAGTER.1<tOGUSNiiAU1R, 19G3;.2 7', P!If Ubersoc-%ioarrcntabakec Java,L Oi,:~.liliiL (nenk:- und Tinnhla-ttl kos .7ava II QuTlltiit (Umblatt) 4, 4?II Java 1TI Qu+litut (Einlage) SI ent Java,IiV QpaJCti'it (Linlage), ' vor Fllavana (1€iilia) mlttlerc Quzlitat (Deckblatt) ,t. Havana (linba) sehlechtere Qpalitst (Deokblatt) r Die din~cligefSihrtc Rauchexj ertise der e~+~:ihnten Tabake deckte sich mit ~ den jeweils angegebenen Qualit2tsgradeir derr einzelnen. Sorten. !. ' I Fti2• die Untersuchungsmet9iodik war es z+maclist crforderlicli, cine Reihe nen ~~om inethodischen Priifinigen anznstcilen, unr die Arbeitswcise fest'zulegen.. ' zuei nlesbezuglich sou'ie fiber die einzelnen angewendeten 1'erfahren ist an. an- r Iiol derer Stelle berichtet, .+~orden [11]. Infolged'essen werden wii hier d'arauf I und nur kurz cingehen. ,f gem Die A'bspaltung der ]Colilenslure zur Bestiminnng der Calalcturonsuure den wurde nach der biethode von Vo~~.L~eEuT [1] dorcligefiihrt, mit deln Unter- A schied, daf3 zur C02 Absorption niclrt',, wie von diesem vorgcschlagen, Na- ~ tone tY'onkalk odcrBlriul'nhydroxydCosung, sondern I~'atronasbcst von Dtsxox ~ clher verisendet ~cerde: Unter „unl(islielien Pekt.instoffen° ist der Teil der Galak- kanr tnrons5mre zu verstehen; dex•r beii einer 11lasserbeNandlung von 25 °C nicht Ern- aus dem Tahak herausgplost werdenn kann~• Aus dem Differenzbetrag zwi- sort+ schen.Gesalnt'-Galaktu~~on.s5iu•e und deui iniloslichen AnteiLergibt sieh dann als c det• losliche. Zur Ce~x immng des Pektins a.us dem Tabak lehuten wir nns yeric der \Let1iode von.LcnxE und FELSr:R. [72]Ifiir Flachs an. Ix'ach vorheriger beso F:xtYaktion der Probe uiit 3Iethylalkohol mid weiterer Bchandlung derselben gegli mit 0,5°,~'tilger Salrsaure und entsprechenden folgenden Aushs~aschungen mit ~ D+ dest. ~1'asset ge ca men wir, so.+eit tsic mog]ich, die Pektine nuttels koehen- ~clek de 0',5°oigcr Alnmonnunrosalat I osung. AnschliefSend wurde die eingeengt'e ~ den : Flh+ssiakclt in sebwach mit Balis lru~e. anaes:iue~tcn 96%igen Athylalkohol. ' 1F~.a11 emgetropft Die so cilialtenen Pektine sind danlch auf ihlen Calahturon- tu2•m sau+egelialt gepnift worden. Das DieBestnnmungdcresteralLlggebundenenPt.1-tinmethorylgiuppenfiihr Pekt ten ~+11• naclhder von. PRFiss [13J fiir Tabak abecundeiten 32ethodc von selu•i FEr.LENssaG [14] durch. Als 3'Te(3geriit fiir die TrmittlSino des entst'ehenden talen Methylalkohols verrnendeten.cir hier das liehtclekt'riscli erisclie l~olorimcter nacb gnng IasGe, ~robeilnach~ d'er Ausscli'Itlglnetl6ode gearbeitet itiurd'e. Aus dbin Pek- so.+ie tieunet8ioxyl- und dern Galaktnronsnuregelialt erreehncten wir, .vie be~eits \'erh: erxriilhnt, dhs 1'erhaltnis beider zocinandcr und deri Veresterungsgrad. Die' saun~e ;Ylolek+ilargei+iehYabestimuning des Pektins wurde mit ldilfedci ~'ICkosit'i.ts. QI, crken nessnngin acetoniseh,er P.ostmg nachh vorheriger l~berfulirung ui~ _"rtt•at. ermiit ~ ~'
Page 67: fiw68c00
Ifigy 2 7 V75- 1~' 9l{l °. S jl(e° ~f t11 lit 1 /IVe. A, ,a: , ti 8~ r STUDIES ON TOBACCO PECTINS AND THEIR INFLUENCE ONi TOBACCO QUALITY Etudes sur les Pectines de Ta6ac et Icuv influence sur In qualiti de tabac by C:: PYRIKI and' W. MflLDENHiAUE2*. - Tobaceo ReseareA.Institute, Dresden, German. Denrocratfe Republic .. , , SUMMARY Tbiswork..provided infarnmrion about the behariour of pectins.ln leavesafgrowingYobneco plams,. about modifications of 6bese: nn:rrrials.dnrirtg dryingg antl fcrmcmarion, and about 11tee relation between pectin mluents. " und tobacco qrrality.. Tbe incrstigation IrrciirdedestimatJoa of soluble and btsobrblegalpEturonic acid and of' -. tsterdlke.boutrdnxdmsylgroups. The.degree nf eslerificaliun wa.ss establi.duud and, for Isolated pectins, the umlecrrloeweiglu..Studies were aiso made of rire acetylg.onps. . l7teresu6sshon•edUiatthepectin•eantenrdepended'moreondie.biologiaaGsrateoftheleaftlmn.onxariety ':_ or leaf position. Pectie content of'dried and fernrenled'lobaccos depended'on the extent of trreatment:.Aircured andbulk-jermentedtobaccos.showedde.lowest molecular weigbts. TYrepresence ofacetylgroupsfn tobacco pecthu wasconfrmed Theree was littlecorrelarionbetweempectih content and quality thougbin sonee cases-s the two characters were inversely rdated.; No significant di~i'erenee was found tm the molecular weights of .. petlins from Turkish and Chinese Virgiufa tlpesor Imported'dgar tobaccos. RESUME. ' "Ce hauail nous a procurd deseonnoissances.mr leoourporlement dafpeN/ne dam lesfeuilles de.la plante ` de tabac envdpRarion sra les modificaBonsqim ces rnatdrinux subissent an sdclrage et d lao ferntematinn; en . , sur l'n.qucstion concernant tarelationentre: le mnlrnrren pecrines et !d quafitd de rnbae.. Less drudes se sont , dtendues sur 1a ddternrinaion de Fanhydridede I'acide galacturonique et de la quanlitd de ses porlions sobrbla" et insolublesaimt que: srrr les groupes de mdtboxyle Ilds enn fornee d'ester.. A: cause des corrdlations de:ces maldriau, fe d'egrd del'estdrifcadion firt ddternrbrd et' en pectines isoldes le degrd de l'esldrifcation et !c -`'poidsntnlfenlaire: En, orureon a fale desdnrdes se rdfdrant d i'a presence de groupesd'aedtyle. -„ .. . LesrLiideotsonl7A•diZquelesmadifcationsqpafitativesetqrranilarivesdespectlnespendantiacmissanredes plaules d'dpendent' essentiellenrent dePetdl binlogiqpe des ferdiles et nroius dr rl•peel dm nlreatn foliaire: ,'£n ce qrriconcerne hs.laAocr sdchdset fermrnlds, les modifications des pecfutes ddpeordent'deYiaensitd- d'4 trairenrenG Des, tabacs "nir-cured"et fernrentdsen uasses:ont.nronlyd lespoids aroi'dculolres les plus.ba.s. . D'accord avec Ies.donndes.d'aulres arterasron parvaiicon.ataterqire les pectinosde tabac contenalent des, gronpes d'acdb'le.Uite relation dhm certain ordree entre ltrquaiPrd des eabacs ef leur contents en pectines 'n'apporoissaie pa.r blenqrr'en certains ca.r Ia proportion rdeiproqnc frr6'inverse. !P ti dtalllpas possible de eomtaterdes di/JYrerrces stgnifrcatives.d I'dgord dafa grandeur nwldcrdaire ni.dans lee peetines des typesd'Orient et der -sabacsVirginle dunois„nl dons fes pedlnesdes labacsd dgares d'9utro-mer, ' , J . . •'th4wperruaaepr<dbutnolalxvrxdbee.urz.e[rhe.uthur•.aeens.. .. ~. . .. !.: • 461 d~ ClN GI:cSSf. 3rQ. s' .. l..G,fo RL D'Fai3~.Ab~rr"~e SCrraC std ! F~6, rpca / Sba4k ?4j& 01 1 i \ r i. {
Page 68: fiw68c00
~V ~^y 1 Z :•rl E r2k0'' n !^^+ilk t , 'L38. Co~srA; •r~~, Z'~1LaUZ f''~nil;.\YAtarxa )<in nh~ qk:n 1 1363~„ 2 1 t 1 dtese Stoffe htnstclrthclt der GUtebeulte lunrg von Tabaken sc ron om en ' Litieratur Gegenstand'.der Diskussion waten.. Nach BRUCKNER [3] ste]it dc !/tr G'ehalt an Pelctinen im tungekehrten Verhiiltnis zur Taliak~,nalitat. Die von. ihnt dm•chgcfiihrt n Untersucliungen diirften jedoclr fiii em abschliefkndes ( Urteil nicht eindeutig genug sein. Auch ScHULCx [4] zalilt dte Pektiue zu de '}x negativen Tabakinhartsstoffcn Itn Gegensatzdazu vertritt VVENcscH [5] ' die 11Seitmng; da0 sie keinen nennenswerten Ninflnf3 auf Geruch und Ge It'LL- schmaek des Rauches ausiiben~ Nach DoRR [6] riclrtet sich die Bedeuttng der Pektine fiir die Tabakquahtat einerserts nach derilfole].ulNrg]'bl3e und I andererseits nach Sorte und ~'envendungszweck des Tabaks. Ei~ kommt zu der Feststclhmg, daR' nnr iim vollreif geernteten B];ittern u-5hrctrdl der Trock ' fnons= cin w.es¢ntllicher Abbau der Pektii e stattfindet. Zigarettentabake der i n; ~-*; 'ieaonders die orientalisclien, die ja bekamrt]icli „cvollreif"' Fo»sungg t•m'/ieoender :~rbeit wurde dem ~~om16. bis '?o: Frbrnan d. J.. ' nY Salisbm}. Rhodosirn, stattgefimdenen71i. lnternationalen ~Yisecnechnttliclien Tnfiak- Konere6 rmoeleot. NST LTV.T~ R7r~:'~5 AEN _ ~.. `'h ~ I~IWS^ . . . _..~-~ ... r~ . .. . . . . . . . . ... - ' .. . .. Q~~ . .. . - . . .. ~'.,{ '~..J .. .. ....:<. . .. . . {y ' . ~ W 1 Untersttchculbellt iiller Tah ll~pe]€tin'c < untt d!eo•en EinfIal(i atlf (lie :C;~IL21'ayuillit'::it*) ; . . ~' t Von . C ONSITANTIN PYRI'I:.I nnd «rALTER.~4fOLDENHAUER F Die Pektine, des Tabaks als 1Hnear-makromolekulare Stoffe besit.zen eine ~ besonderc biologiselie 13fichtigkcitt fiir die Tabakpflanze, wie dies auch liei % c andc:rcni TCulturpf]anzender Fall ist. Neben der Punktioneincr mechanischei V~erkSriaung der cinzelner Pflanzeizellen kommtden Pektinen nocly die ~.e- ~ gulierung des Wasserhaushaltes undi des.Stoffaustauschcs im Zollsystem zu. t7ber das VTorkonnnen von I'Cktii.ien im Tabak nrurde bereits vor. Jahren vers•,hccdentlich bcriclitet.. Die dort angegebenen Petctingehalte sind mehr ~ oi?cr- n e7 tiger stlark voneinandt:r ab rciehcnd, was n•ohl' unter anderem auf tke anlgeu~endete untersehiedlicite Unterstuhm.lasnmthodik zurfickzufiihren ~ ist.. NReh.Bekanntcrerden der Arbeit von V~oLCUFRm [t] iibcr eiite Bestim- mungsmetliodee der Gadaktnronsaure in Ppktinpriiparat'en hat Vt'wlrL [2] in neuerer Zeit eine Reihe von Tabakproben auf den Galakturonsluregehalt untersnclit und h•serbeu festgestellt, daB dieser bei den vcrschiedener Sorten und selbst intnerlmlb eiiler Sorte, je nach dem Stand'ort, starkeren Schwan- kungen, und zwar von 5-2p"/~, unterliegt. I -Der Gehalt der Pektine im Tabak ist denulach schr betl.ichtlichy so dafJ' 0
Page 69: fiw68c00
118 J. DOESDVICC 1 4 was also studied in ltilled, though unheated tissues, while these ~ trials were repeated with pectin films. A study was also made on the behaviour of pectin when dissolved ~ in water and boiled at various pH's. Firmness of plant tissues after boiling at various pH-values. Beets, turnips, potatoes and unripe.cored apples were peeled and out into 1 cm-cubes. Three hundred g lots o€ the diced vegetables were placed in 300 riil aliquots of 0.5 % sodium-citrate solution, which were treated with some drops of cona. HC1 or NH3 solutions to pH-values ranging fi•om 3.0 to 6,5. With the use of vacuum the cubes were impregnated with the solutions of different pH-values, which were maintained constant for three hours by the addition of HCl or NH3 solution. The cubes were coolced at 212°F for 10 minutes in the same solutions and then cooled in air after spreading on a screen. After cooling, the firmness was measured by means of a hardnessmeter (12, 14, 59). For the deterniination of soluble pectin the cubes were ground in a Waring blender afl,er adding 000 g of water. The pH of the resulting product was adjusted with NHd OH or HC1 to pH 4.5, and the soluble pectin in the filtrate determined as Ca-pectate. The effect of coolcing on texture of turnips is presented in Fig. 1 A. Similar results were obtained from,potatoes, beets, apples and, in a somewhat different experiment, from cauliflower. Measurement of strength and swelling of pectin films at various pH's. estILzGO© A solution of purified pectin was dried on glass plates to form pectin films containing 96% pectin and 0.78% oalcium. The degree of esterification of the pectin was 75 %. The film was out into rectangular 7 X 7 cm pieces, each_ weighing about 4.8 g. Two solutions containing 35% alcohol and 0.2% acetic aoid or 0.2„ acetic acid and 0.2% oxalic acid were divided into 8 aliquots of 250 ml each. The aliquots were adjusted to various pH-values, ranging from 3.0 to 6.5. Four rectangular pieces of the pectin film were put into each aliquot for :.'4 hours, while the pH-values of these aliquots was maintained by adding some HCl or NH4 OH. After this treatment, the strength of the pectin films was deter- PRCTSC Sl?IIXTANRRS AND FnO[VR99 DVa1N0IIRATfSO 119 .A'.enn.' n,on.P..nN .~,~.. x
Page 70: fiw68c00
258 CuNsrArTCSPxia~xr nnd WALTER D1or.nr.xuewEa Tob.elle. 9 Unt'orsuchu:ngcn an t7bcrsce-Zignrrentabaken ,Iava-Taliak Angaben Gal'aktmnns5ure als Anhyd.nid iu °,q.,dl Tabak-Troekensubstanz:. Unlusliche Ghlakturon- auure a1s Anhydrid in %,d: Gcsam¢ Salaktlironsa.ure L-uslichc Galakturonsuu re als Anhydrid in. oJ'p d. i 0'ksamtgalakturons5ure Pek(inmethotcylglvppen als1Sethylalkohof in % d.. Tabak-Troclfensubst. .. Verhaltnis ilTethonyl- g?'uPpen an, Cesamt: galakturtunsiiurnVcrestcrungsgrad 19G3, 2 Ilavana-Thbak Deckblatt I. sehlech- IIi III IV mittlew Dcck- u. tere Umblatt F.inYnge Eihlage Qualit,3t Umblatt Qualitat 16,17 15,89 p5;60 L5',G4 111,'J~4 ~. 13,26' 85,8' 65,3 84,8 84,2 82,2 81,8' 14;2: 14;7, 15,2 15,8 17,8 18,2 0,117 0,151 0,277 0;313'. 0,250 0,243' 0;72'. 0,95 1,78 2,00 2,09 1,83 4,0 5,2' 9;8 1140 11,5 I0,1 Proben cinn umgekelirtes Verh3Itnis des Pektingehnltcs zur Qualitiit bestclit, wenn aucly die anfgetretenen Unterschiede nur gcri;ng sind. Die ,iilicrwie- gende Aiva.hl der Tabake zeigte jedoch praktisch keinc oder nur mtwesent- liche Abrveichungen innerlhalb der Qnalitntsgi.vde cincr Sotrt;e. Demzufolge konnem wir nicht von cinem feststehenden Zusammenhang zn-isclien der Qualitat des Tabaks mid dem Pektinaehalt spreclien: DoRR: [61 vertritt die Alsicliti, daB die Pektine in den Orient-Tabaken groBtenteils bis zu 1:lcinen und kleinsten Teilstiicken abgoliaut sind; wah- rend in,Zigarrentaba,lcendie.gro$en Pektimnolckiile«eitgclictidst erhalten bleiben. Diese Meinung stutzt sich auf die Tatsache„daB zum Zeitpulil.t der Ernte die Abbauvorgiiaige in den.Orient Tabakenim Verglcich ztma~Zigarren- gut.1citer vorgescliritten sind. Abbcucl en dacon, daB bei den Untersuchun- gen dcr.isol'ierten Pektine aus don Blitt:ern der Avachsenden Tabakpflanze dcr Sclhncidegutsorte:Ergo nurin der 1. rrntestufe cin 7,usanvnctahang des 19G3, Abbr (Tab ihre s groBt ic-ie a bis 6 Be Oxier mrd: 1lfole- spezi' arts c nach. Prob Onie Sams Nevr Chin Kwei Scha: T,iga Java Havs IVi Dfolei nicht den ( gespr gewo die i landi nisse) die l was < Dit Doul `Liaar
Page 71: fiw68c00
'osnAve.n. 19G3,2 ' , ~ m -~ N as .~ O V o a ~ tD • $ N c 0 ua w c w w o w o. m cr b O' o. M b N p N 0 rn, G o m N w. O m o ~ a m w I o w c; N r w N w m ~ . N 1 ~ ~ P " ~ N ~. . N ~' f~ O O' C b O m I 1963,.2'. -_,Tahnkpektinc und dcrrmFinflu6 nuPdie TnbakryualiCat. 2.57 Tahellk 8 Untcrsuchungcn. nn. ChioiutaLaken :' A'n aben " Schantnng Ku•oiehoM g A 1.13 I A 1114 I A.IQiIJ6 A' I/3'. I A111/6 Gxl'aktnronsHtne als Anhydridd in % der Thbak: Trockonsuhstanz 11,93 12,08. I 11,0 '. 12,12 1'@,06' I7nlu"sliehe.Cklaktnronsaure.als . I Anhydrid ina % d.: Gesamt.- gnlaktnrons5ure' 75,4 74,9 78,0! 76,1 74,9 Lbsliche. Calakturensau¢e als I AnhydFid i~n^o d'. Ccsamt- I ! galakturonsiiure.~~ 24,n! 25;1! 22',0. I 23,9 25,1 Pelitimucthoxylernppen ads Itfethylalkohol in % der - Ta6ak-Trock_ Q.4thstanz- 0,685 0,6A7 I 0,648 0;596. 0~,:r10 Verhiiitnis.3feG' : y7eruppen I • I ' zu Gesaantgnlnkturonsaure 5,74. 5,86, 5,89 4,89 4;48. Feresterungsgrad 31,6. 29,5 32,4 26,9 24,6 spricht der Anschauung,daB eingroBer Gehalt an Pektin und Ligmin, die jia beide _1Zethotylgrnppeu enthalten, der T'ahakqualitat abti'iiglfeh ist. Die Pektiile der Zigaarentabake untersehciden~ sichh von denen der 2iga- rettensorten dahingehend, daB der T7ethyT-4'eresteiungsgrad'. ersterer im Vegl'eich zu den letzteren tvesentlich niedriger liegt. Bei den untersuehten OTient- und' China-Vii+gin-Sorten bewegte sich dieser zwiscllen 24,3!, und 30,5 (Tab. 7) bzw. 24,6 und 32,4 (Tab. 8); wahrend der Grad der Vorestelmng bei den Zigarrentabaken mit nur 4,0-1'1,5 (Tab. 9) festgestellt .itu•d'e. Der Gehalt an esterartig gebundenen Methoxylgruppenn in den Pi•oben der Zigarettentabake (Oi•ientt und Viingin, Tabb. 7 und 8) schwankt zwi- schen 0;J40-0,fi21n/q,bzw. 0;540-0„G8o%e gegeniiber den "Ligprrentabaken (Tab.. 9)' von 0yI117-0,$1'30,/0, Der niedrig¢ AlethoxylgruppengehalC letzterer ist offensichtlich auf die iiltensivere Fermentation dieser Tn.bake zuruckzu- fuhren, wobei'die Pektine einee weitgehende Dcmetliydierung erfahren haben.. Die hier gernachten Feststellungen.beziiglieh des lfet'hoxylgrnppengelia,ltesstehen im ~4 Itin~ nmit den Befnnden von Pxuls5 [13] und anderen, die ebenfalls n,n'1"ro srientaba]ien.beiloutend gerinaere Mengen an PcktinmethyI- alkohol n u,hwiesen a7sin. '/.igarettentabaken. Aufl Grund unscrer UtiEersnchrnigen konnenn wir sagen, r1aB;c wie im der t] Taba.kliteratur die Ansicht verti'eten wird. [3; 4], wohl an ciner Reihe von ~ ~ ~ . ~A (G
Page 72: fiw68c00
INTRODUCTIONiAND'METHODS Anumber of studiesonthe occurrence ofpectins in tabaccoo has been published recently; the large . di8erencess im pectin eontentt therein may' be attributed tod~iRcront analytical ntethods. After sthe d'iscoveryy by Vallmert:(12)iof'a new method forr the cstimatiom, olf galacturonic acid~ inn pectin preparations, •Waht, (13)', investigated Ohe. galao- turonic acidd eontents ofaf seriesof tobacco samplaand concluded that there were d'+fferances of 5to 20'perr eentt depending'.g on variety. and l site of cultivation.. Because. of thoe large amount of peclinss in _ tobacco„ the question of their etfectt on tobacco . quality has been frequently discussed. According to-.' Bruckner (I),, whosee researches were not sutEcicntly extensive to reach'a definite conclusion, pectin eontent iss inversely rclate& toquality, Schmuk (10) .also ineludedithe peetins among'the deleterious constituents of.tobacco: Wenusch (14) found no significant cRect on aroma or tastc. ". According to Ddrr (2) the elfectsof:pectins',dcpend oa.their nwlccularsize and on the type and use:of the tobacco. If a rclationship.between pectins'and toliacco.quality is to be established, it should take into account.not only the contentt but alsoIhe chain length, extent of esterification and other - qualitative differences betweenn pecfins: As tfiere i l s inadequate:informatiooin theiterature on lhcu questions,. or on the pectin content of growing plants, thcsC'pointsd requieedd thoroughinvestiga- ' lioni as mentionedelsewCure(6). The following - points have been investigatcdiik.the.present work: `: -1~.. Tlia~~e content of prrtins~ in growing ~~. plants.. 2.Qualitative and quantitative changess in bbaecoo pectins during drying and' fermen- tation.. . .. ~ 3:TheeReet.orpectinsonaobaa.oquality. ~ . The following three varieties were emplbyed for the study of peetins'in growingplhnts: ' I..-Ggn: anauraa-type curtting.tobaccog withh low carbohydrate content. . . 2. ffnrato Ilc: a Ihin-lcafedcigar tubacco.. 3. Rbgin. 732r.a green-leaf type eigarettee tobacco withhigh~sugar content. Samphx were harvested from the bottom~ third of the plant: on 29th July, from the'e middle third oni 2oth~ August and from the top third. on 17th September, and at each date Icaves; were separated beforeanalysis into °over-ripe'"; "ripe" and "under-dpe". In. "over-ripe" weree included in. - `. Etgothepredominantfyyellowleaveswithbmwn. : tipsy and in "ripe" the yeltow-grcen leaves; °over- dpee' leavesof Havnna.lloand Virgin 232Iwere . light green, with ycllow patches, and "ripo.`l6aves were lightt to dark green. Ergo and Havanw . YIee were also sampled: at planting-out. As a' .' Gceze-dricr was not available some reaped leaves were killed~ by inactivatlon, off the enzymes at , 70:-80iC and the9eaves finally dried in a curronl. - of air, at 40~'C, although the disadirantageso6 this. proccdvre were known (7, 4)..This wasxo provide samples foranalysis of the eomposition of leaves 'at, harvest for comparison withh cured and' fcr- . mented Icaves. . Changcsin pectins~ during.drying and fermen- _talion wem' investigated in: the "ripe" middlee kavess of Ergo and Havana. fle,. Thee following'. .~ treatments~were'applied: . 1. Ergo Bue-cured: hot-roomfermentationafter nedrying. - 2. Ergo~air-cured:', . (a) hot-room fermentatioa after redrying;. (d) forced' fermentation. 3. Havana Iltaiueuredr{crmentcd'in pites. Thee method or split samples (5) was used to ,. exclude, as far as possible,, variabilitywithin the - material. As.theexperimental samples for Ifermen- taliomwere.smatl; they were inserted in the.middla of bales or pilesof lobaccoof the same type and ,... quality. . _ The.hot:room fermentation after redrying trcat-menr consisted of.holding:in tlie,re-dtier for one . hour.followedbybalinginahot-roomat37-38"C, relative~ humidity about 75: per cent'for 15 days.' ' Forced fermcntationwas carried:oufat40-A5:°C. . ..and relative humidityabout 75 per cent for 24 days: Fermentation in piles was at a moisture content of23 fxrcent; reaching:a maximum tem= f2'C bfili , perature o 6Ceore re:png:. : The investigation of the effect of: pectins on tobacco quality was carried't outon a seriea.of eom- 'mereially classified Orientall and. Chinese Virginia _ varieties and oniimported cigaetobatco. Details or the experimental methods have been .-, publishedefsewhere (8). RESULTB• ANDDISCUSSION'. 1. ihe pectin eontent.of grorving.planbAsshown in Table 16 the content of gatacturonic acid was related: to: the biologieal' state of the leaves in the same way in all three varieties~ no varietal differences weree notable. However, the ditferenczss in content between parts's or the plant weree generallysmaller for the variety Havanalle than for Ergo.,The:bottom third og'Ergo ripenss somewhat faster than Havanallc, but the top 0. _ .0 ' .i •'RCSYmaRIMTla11M.rM00MMet1UNlena:ll~trCe' 1• .462
Page 73: fiw68c00
116 a, noasnvaa The presence of cellulose in the primary wall is shown by the occurrence of a weak birefringence (19), but this relation may be disrupted due to the fact that in the inner parts of the primary wall cellulose micella are not orientated in one direction (43, 61). Small quantities of lignin which have been revealed by means of new, more sensitive methods might influence the behaviour of other cell wall compounds during boiling (4, 30). In addition to the influence of the constituents of the cell walls, the behaviour of peetie substances can also be determined by components from the cell contents. Thus, it has been shown that the cookability of peas is governed by the quantity of phytic acid in the product (32, 40) The protopectin would be decomposed by the calcium-binding action of the phytic acid; certainly such an in- 8uenee can be attributed also to the anionic buffer system in the cells (9,14). The latter explanation is based on the validity of HEN©r.xtrr's theory (22, 23) on the structure of protopectin. It is assumed in this theory that pectin molecules are bound tiogether and to the cellulose by calcium bridges Uetween the earboxyl groups. However, pectins with a relatively high degree of esterification, which are often found' in plant tissues, are not made insoluble by Ca-salts. Thus the formation of insoluble protopectin must also depend on other factors (10), such as covalent or secondary bonds to other cell wall substances or mechanical twisting with these (47, 50). The latter factor may be evident from the observation that after Ca-extraction from the cell wall, the removal of pectin by washing (13) takes a long time. Hr1 Tov (26) considers the jellification of pectins ae an a r t i f a c t of the processes in the plant and is of the opinion that gel formation is controlled by the same factors involved in the formation of the gelstructure of protopectin (57), though the importance of various factors may be different. In this connection it can be said that Ca-salts really play a r©le in the jellification by pectins of a relatively high.degree of esterification (11, 15). Kr:RTESZ (35) postulated that pectins with a similar high degree of esterification would be insoluble in the presence of Ca-salts if these pectins have a very high molecular weight. ZjSNI'L'400 R XPERIMRNTAL Investigations were made on the relation between firmness of tissues and behaviour of the pcctic substances when cooking of the tissues at different pH-values. Por the explanation of the observed phenomena the relation between firmness, pectic substances and pH ........... ............. N
Page 74: fiw68c00
F 250: Co:carAxrIrL'rmxT ,mdWer.rranllfer.ur.vtunarz . 19G3,2' . stanzen. bezogenen Wcrtc znorunde gclegt. Als Vmrglcichsgrwullave wvrde die Rr.inasche het:lnecrogcn [1KJ]. Die bei der Troc].nung und Fermentation der Tabake Ergo tnud IlavanaIIc crfolgten Pektimvcriindetvtigcn sind in d'enTabellen 4-Gentdtalten. Bci der Schneidegntsorte L'rgo ist der Gelhalt an Ghlalanronseure w3hrend der IleiBluft- bxw. Ilangtrneknung, ihn Vcrglcich zu der entsprechenden fi- xicrtem Probe unn etwa 5 bzw'. 9°fp,.vermindert word'en. Dies bcdeutet, daB ein Teil der Peldine so weit abgebnut tvurde, d.vB er nicht mchr als Galak- turonsanre zu erfassen ist. Der totale Abbau ist iin Hang eraeartungsgea7aB staiker als unter den Bedingvngem der°FieiBlufttrocknung: Qualitative Ver- andenmgen sind hier insofern erkcnnUar, als der unlosliche Galakturons3ure- gehalt durch die Trocknung etwas vermindert wurde, walirend die Iosliclien Anteilie cine gewisse ISrhohung crfahren haben. Die 11rarmravurfermeatation brachte bei den Tabaken der jeweiligen TiooknungsatG' keine tvesent.liche Ver3nderung des Gehaltes an Gesamt-, loslicher und util'dsiichcr Galakturwisaure. Rtwas anders hat sicli die Kaan- merfermentation bei den Itamggetrocknetcn Tabaken ausgewirkt; hier ist eine gexvisse: Verminderung,im unloslichen naid cineF.rliulmng iim losliclten Anteil gegentiber der lediglich getrockneten Probe eingetreten,, ohne daB der Cesamt-Gal'akturons5uregelialt tvesentlieh verandert.wuade.. Die Digebnisse der Untersucbungen an Havana IIo bestatigen praktisch die vorsteliend, besprocltenen Di•]cenntnisse: Hier erfolgte die Trocknung allerdings mir im II'ang, midi die Fernnentation, entsprcchend' dem Verwen- duugszweck des Tabaks als Zigarncngut, im Stapel. Mhrend der Tioc]inung des Blattes sindl ebenfalls die niengen an Gesamt-Calakturonsaure vermin- dert, wobei, auch die prozentual'en Anteile der loslCchen und unloslii;hen eine gewisse Veranderuna erfahren haben. Untcr den Bedingun,gen der Fermen- tation im Stapel ist neben ciner gew isse.n.qunlitativen Veranderungder Pek- tineeingcriiigert:ota.Ier Abba.u zu beobachten„imGegcnsatz zudsn Resultat'en des Ergo-Tabaks bei den anderen Fermentationsarten. Dies dUrfte darin begrUndet sein; d'aB' die Fermentation im Stapel;l tivic auch bekannt ist, we- senGlich~ intensiver vor sich geht. alsbeis d'en anderen angewendeten Verfah- ren. Jedoch sind aucli hier die Veriinderungen n•5hrend der Trockrmng groBer als untcr den gewiililt:en Bedingungen der Stapelfermcntation.Die Untersucliungscrgcbnisse tiibe.r das Verhalten der lfethox-zOgtuppen der Pektine wiilsendd der Trocknung und Fermenln.tion sou ic die Anderun- gen des Veresterunpgrades findetn sris in Tabelle 5. Unt.er den Bedingpngen der ldeiBhift• und llang-l'rocknung sind' Ifrak- tiscli keiue mengenmiiBigen Ver:iitdcrmigen nn Pektimnethosylgruppcnge- haltdes Tabakseingctreten,s jedoch sofehe qualitat~ieer Art.. Dies konmit insofern ztmr!tusdrnck,, als' die 11Sethovyl'grnppen zugunstien der nach der 1GG3,
Page 75: fiw68c00
, If M.li Ar, (`yn._ v ~ - . - ' . . - . . .. ~ 14tef y / ~ AA0 ... . ~~ . •, .- r INTERACITOIV' OF CALCNMi AND POTASSIUM IONS VNITII! CARBOXYL GROUPS OF PECTIN R.Kottrl and LFtrftnA ; Slovak Academy of Sciences, Bratisfova Institule~..of,Chemistry, bvthe mosaic virus contain predominanlly calcium pectate which then inhibitsthe hydiolyti¢ - - protein eomplext, respectively. Thecell'.walls ih eavirons ofth_ site of.inl2ction of tobaecoleaves . ; 7heo mutual exchange of calcium and'.potassium ioos bound'topolyunnnic acids is important from, the.a3pect'ofplantphysiologyandphytopathology.Thefou%erthedegreeofesterifiaalion - ;::of peetin, and the higher the content of divalent cations in the plant; the firiner are the cell waih. In apples; the.loss of the . resistenec toward the action of certain pathogenic-fungi ~~ is paralleled by a pronounced d6crease of'coneentratiouf of polyvaient cations boundto pectinor to the p¢ctim~ Both constants were found totie a good criterionn of the distribuGon.pattern offreecarboM .; groupsal'ong the pectin molecule. .. ' ' . . . .. . - , ' . . . r . '. groups. in-n the molecule. 71ie found relationships have.a generalvalidtty and do:noY depend on, the origiuafpe.etin/onthepolyuronidecontentinthepreparation,onthemolecularweightandnature of neutral saccharides bound in the pectin moleculee or in accompanying polysaaharides. From the results thee values of K'andKK' have been calculatedd for nine typical'structtuesaf peain. . . ion exchange in pectin having a statisticali distribution of free carboxyl groups im the.molea,{t ions with carboxylgroups of pectin is govcrod r have been establishedL The interaction of GaZ~ : exactly.bythe.multipfe equilibria law. The constants kan& KK were.expressed asfunctinas 11 -Qf the este.rifieation degree of pec!(n, ionic strength and the~ mean distance of free earbo,41 ~ The dtabilityeonstant (K) of calcium pectinate and the selectivity coefficient (K'K') of Ca" ^ and'IC+ of data obtained byviscosttymeasureirients of thee coriesponding soisand gelsto-vvhich.sucas•~ Schweigcr6•7 ' has considered the relative bond-streaglhof divalent catians to pecticacid iuvitw; information on pectin solutions for reasonswhielu wilt bef dealt withh in the discussion section. = . p a y not decrease the activitynf these enzymes;. i TIt"e ezchange of monovalent and divalent cations in pectim has so~ farr been' ezamined only in a preparation eross-llnked' bymethyleney bridges°ts. The obtained frndingss cannot providt _ Onn the other hand potassiiim, sodium,, andi magnesium ions do ' ectolytic enzymesz etivit of a ahelating agent, binding metal cations wasadded. ity coefficient ot calaitun and potassium iorUezchange in pectin as a function of the' pectinate inn potassiumchloride solutions of different ionic strength aDd of tlie.~electiv; .; • The present paper reports onn the investigation of the stability constant of calmurtt; mean distance of.free carboxyl groups in the moiecule,; I gona-Iioa CirShOSIO G8e Cb N61. ]iL196n ~ 00727400
Page 76: fiw68c00
~r thisgel had a mouth feel very similar to Effectlof temperature ' t Th d f d esser . e proce ure -r „J~rd gelatin" or Standard gels were allowed to remain. th f ll i To 350 1 e. o uw . ng: m thisgci was at room temperature for variouss lengths rrt addcd 409 . sucrose, 55 m] of a sotu! ft ] fi f i ~ o me a er.remova t omstorage before ining 1.95g citric acid hydratt and5 ' nlx lution containing..LBg sadium citmte sagae . +~ ° ,o 4 a. takerr.Temperatureof thegels waspl,~tx~,t The mixlure.was tirought to a boil in d g ql stainless. stecl sauccpan. on a measured €mmediately' after each set', of'f r~ ° ~F Itotplate. k4g.sampla of Iif.Pol'y® pec- readingsby inserting a thermometer in.to. „MViuusly mistd with 35g sncrose, was the centerof.acrushed portionoFlthe:gel. A the.mizture was stirred for 141D sea It is well knnwnn that low-ester neatin, '~; gelss soften with incrcasingg temperatures ~ KstpsgCa"/gHi-Poly Pectinwere.stirred andlthisisillustrated!inFigure2.. ,.ruusly and the boiling contrnuedumilla The equations for the straight lines'. !lgbtof 3fi4g was reached. Totatl boiling bestt fittin the oints on. the ~ ess kcptas dase as possibletob min. The g. P graphs were: „•rvrcwnsc then quickly skimmed too remove y= 7.8 + 0.24x for therelationship be-r,~ xit puurcd~ ihto the prepared containers tween sag and temperature and y_t,„qxndardgelhada.pHof3'.8.1165.11 - 3.5xfortherelationsflip be- [weenn breakingg pressure and tempera- ryM,n7natian of factors inOhenciag. , Cure. From t}iese straight lines a cornec- rr'r'xOCler " the,shndard gel making procedure, with tion of ± 0.25 was calculated for each r,•r,urymodiftcatinns;wasuscd'.ta.determihe degreeaboveorbalowlll°C:forsagvalues rffecu of 7emperature,, pectin concentratiom6 obtained in the range of9-15°C:.. For the ~ nime, pHand calcium level unn sag and break'tngg pressurereadings;e acorrec- a,.dmb pessvre values.. tiom+- 3.3'was3 calculated forr each degree 01 pruccdhres above ortielowIIl°C for a.a temperature qahtore, ash,., methoxyll . content, galactu- range: of 9:-17°C. These corrections were ,,,,, acid level and molecular weight were used when necessary in, the work reported ~vrrnincd as described bySmitt and! BryanC below. 71, fiorthe determination ofamide.levels EftectoCpectinconcentralion+.'.x•hcd and dried samples of ca. kgweee,,..,.-oJaJ in about 250 ml Hr0. This wasTfie data presented in. Figure 3 were s,,,:~ wi~ih 20m1 10%NaOH.and about 100 ml obtained with standard gels iit which only .. en distilled overintoa, beaker contaih, •the amount of pectin and,sucrose were ~ d OLIN HCI. Escessacid.was tilrated' varied in order~ to keep.a constant..soluble .,-1\,;tN N.rOH topH &. From this the num- solSds level. w•.dbmide groups present in the.pectin was At a constant calciumlevel, increase in ,+..Wed. pectin concentration results'in a firmer, kESULTSB DISCUSSION stronger gel sihcethere are more free carboxyl groups presenY.. Owens eta]t tJll. IIIi-Poly® Pectinused had a meth- (1949) found tAatt increasing the pectin .+yl a•n~tent of5.5%n, a galactUronicacidc concentration increased the strength as,a k .:I uf'96.1'.% and a molecular weight of logarithmic functionn where strength was i1!,000„ all on an acid-washed and dried measured' as the shearr modulus by the ar.n Tile moisture, ash and standardiz-rigidometer. However, in their work, the ^r sugir tot'.alled 19L69o and. the pectin, calcium:pectin ratioo was kept constant as •- :xined 13arnide groups/100 galactu- the peetim concentrationn changed: Itt is r.:c units.important to stressthats the data reported 170 g0 13. 120 a 0 /0 '9 • 4 5~ .3' 10 1'S. 20. Pectin, g~ -Cooking, Time,mim ~ )-*^e inquenceof pectin.concentrarion, ~ `Y /Al.any6reak'ing pressure 15/.. Fig. O-Theinfluencee of cookingg rime'on sag fAJ and breaking pressurefBJ: i ; GR:4D/NG OF LOW-ESTER PECTIN-727 ! i here were obtained with. one pectin prep- arat.ion... Th.e, calciumsensitivit.y of a low- ~i ester pectinn isdependent on, a variety ii of factors such as the presence ofamide groupsih thee pect~in„methods used during ~ pectin manufacture,,, the solids content of - the gel,, etc.. Asas result, somewhat'differ- ent resuitss may' be expected withh other ' pectin, preparations. Effect of cooking~lime. i, . Data presented in Figure 41 were obr tained when standard gels having a.pH of ~ 3.8'8 were cooked'for. 6, 11, 14 and 18.8 min. With extended cookingg times, sag increased and breaking pressure decreased somewhat. Increasingthe cooking time isi thaught to incYtase the extentof depoly- merization of the pectin resulting im a weakergel. ~... Effect of pH ~ By using:quantities rangingfrom.2-35. ; ml citric acid solution containing. 390gcitric acid hydrate/liter and adjusting theamount of water needed in the standard "formula, a seriesof gels having different pHH val'ues were prepared and tested. The ~pH'H obthegell wass measured with a ; Coming.g pH meter afterr the gel was . evaluated. ; The effect of pH.'om the sagg and' breaking pressure.of a Hi-Poly@ Pectin gel with, a fixed'caleium to pectin ratio is,given in Figure 5.. Low-methoxyl pectins. cam be usedl in productsvaryi.ng in pHfrom 2.5-6.5 (Anon., 1947). However,.a; , maximum breaking pressure readingg wass obtained att pH 3.8 and aminimumsagwasobtaineda at pH 3.3-317. For a low-methoxyl pectin of32%a i esterifieation4 Doesburg (1965) .showed • an increase in.gel, strength,, measuredi as a i.. compressionn moduluss of elasticity„ from pH 2.4-3.1.,, followed by a gradual de- crease. Owens ett at.. (1949) showedi for a ~liow-methoxy[ pectin,, used with a con.- i I Fig. 5-The. inNuenceol' pH on sag. 1A2and. ~ breaking presruref8J.
Page 77: fiw68c00
1t)G3, 2' 13G3;.2'. TnbnkjpcRtidm tmd, dcrcn EinlluGlaut' dic Tahakqumli6nt 243'3 ,.:raevr:n n Tabake deckte sich mit Ihen. Sm•1ien. ;t crforderlich,, eine Peihe. A,rbeitsweise festzulegen. ~Ien Verfahren ist an an- r werd'en Avir hier darauf ung der Cala,kturonsaure igcffihrt, mit dem Unter- esem vorgcsctilagen, hTa- :atronasbest von. MERCK n" ist der Tei1 der Galak- andlnng von 25 °C nicht lem Differeiizbetrag zwi- +n Anteil ergibtt sich clann 1 Tabak Iehnten wir uns cchs a.n. Nach vorlheriger r lnandhurg dersellicn ~rl'e Auswasclmngen mit e Pektkne mittels kochen- cnd wurde die eingeengte a OG%pigenI tlthylitilkohol h auf ihren Calaktnron- inmct.ho:cylgruppen fiihr- ;c:ind'erten lfethode von iit2hing des entstehenden t'rische Kolorimeter nach tet imn•de.. Aus dem Pek- rchnoten ivir, .rie bereits .ii Veresterim;sgi:tid. Die nit ]li.lfe der Viskosit:its- Cberfiihrtmg, in Nitrat- pekLio [,15], [16, 171 vorgenommcn. Die :1Tessungen erfolsten mit denr Visr kosimcter nach I'Iiiprr.i;a, bci 20 °C. Fiir den qnalitatib.en Nachweis uful die qpantitat•ive Bcst.innuamg der Essigsiiure im Taliakpektin lehnt.en. ~cii•r uns, entsprechcnd unsercn Ausfuluvngen an anderer Stelle [l ll], an rlie :1lethode von Het,Gi.r.1n and Vocr.aolsss'an (18]. , EryeGaaisse und Di:kussion. Untersuchungen an der wachsenden Pflattze Die Untersucliungen an.der wachsenden Pflanzewurden an. 3 verscliicde- nen. Tah:roksorten vorgenommen, die keii7e verwandtschaffliche Bezie]nmg zucinand'er liaben. Ergo ist ein Solmcidegutt.vbak mit geringen 1Sengen an Kohlenh5~~drateny Aurea-Form, Havana ITe ein feiiiblattriger Z.igarrentiabak uud Virgin 232 ein Zigaret'tentaba.k mit hohen Zuelcergehalt. Bei den letzt- genannten 2 Sorten handelt es sich bel:anntlich um Griinlilat't-Formen. In denTabellen 1-3,sind die IR'esult.atedieses A'hschnittes zusammengestellt. Ausden Versuchcergebnissen der Tabelle 1 gelit ]iervor, da(i' die aufgetre- tenen Tendenzen der Calakturons:iure bei allen 3' Sorten pralitisch die gleil- ehen sind, so rlaf3'nichtvonsortenrn5f3igenAbweichnngen gesprochen werden kann. Nur die al4gemcinn geringeren Unterscliiede zwisohen den einzelnen Erntestufen d'es Havana.IIc im Vergleich zum Ergo sind ina gexvissen Sinne sortenbedingt: Ergo. reiftl n:imlich inI der ersten Erntestuf'e, etn-as schneller alk der andere; er ist abenznm Schhrl3'infolgesei:ixer Irinpreu Vegetations- periode gegeniiber dem H'amana IIe spater reif: Dies iinBert sieh darin, dafiI hesondersinder 2. El•ntestnfe die Werte des zuletzt genannten TaUaks aus- geglichener siind. Der Calakturonsauregeha.lt im Setzlfnasstadium erfahrt im Laufeder Ent- wicklung der. Pflanzeu-escntl'iche Veraiidenuigen... Alle3 Sorten untersehci- den sich in der ersten Erntestufe grundlegend von der zweiten and' dritten. 1VaSu•end ersteree von iiberreif naeli rei.f bzw. unrciff eine Zunaliuee im C~iclak- turonsiiuregehalt erf:ihrt, finden wir in den anderen eine fallende Tcndenz. Das ahiti•eichende V¢rhalten ist vor al'1en darauf zuriickzufiiliren,, dafS die Pektine in den ul.erreifen untcren Blattern infoloe der luer weit.vorangc- schiittenen biologischen Vorgange schon an der Pflanze ei'aien teihwcisen to- talen Abb:m crfahren haben:Dies istiauf diee besonderen tiI'acl[stmnsbedin-a ngen znriickznfSihren, denen die creten B13tter in jedem Falle tuitedicgen„ sou7ie auch auf die seinerzeit lterrsehendc `I'rockenperiodo. Das prozentuale Verliiiltnis der unloclichei bzw. loslicl'acn. Anteilee zuv Gesanut.Calaktnron. " siiure ]a13tt in der wachsenden Pflanze im all-emcincn keine RcgelniSBigkcit erkemncn.. Jcdoeh seii bemerkt, dab sich bci dcr Y.ugrtmdele•gtnng der dil-elit Q crmi~tteltenAli.soliitwert.e, die in derTabc]Oe 1 aus platzspa.r^ndenGritndcn. Q N ~ ~ 67 N
Page 78: fiw68c00
<nKtna 1963,2 , k~en~ ~ ~ i;64 1,2 1;3k3 ll~nvana-Tabak. Deckblatt mittl'.cre Qualitiit~ 11,94 82,2 17,8 0,250 schltrch- tere QuaCitiW 13;26 81,8 18,2 0,243 ' ,00 I 2,00 ~., 1,83 ,0 '~. 11,5 1 10'1 ~ :s zurQualitiit. besteIit,, ng sind. Die tiberwie- nc oder nur unwesent- ner Sorte.. Denlzufolge lrenhang zavischeni der ri.den Oricnt-Tabmke.n ri abecbaut siiid, wnh- n•eitgchendst erha]'ten Ia.R •r.tnn Zeitputil.t der "eng]eioh zunl Zigarron- bei tlen Untorsuchlm- fisendcn 'I!abakhfla+izee in Zusalulncnhang des IOf3,.2: Tnbnkpcktieremdldermx Einfln8nnf die Thbnkqnalitat 259 Alibaues dcr Pclctinc ]nit dcm Roiflu gsgrad' fcstgestellt werden. konnte (Tab: 3)„ist zu bcriicksichtij;eni daB die Zigarrcntaliake naclt der Rrnte durch ilire intensivcren Tiocknungsr und Pcrulentationsbchanrlhmgen wesentlich groBereVer3ndctvngen.crfallrenalsdieZigv ettentabake dersaurenCruppey .vic auch nnsere ent.sprechendenUntersnchtrngmlgezeigt haben (vgl.Ttibb.4 bis G), Bei' der vorlicgendcn Untersuchungsreihe habcn wir die Pektine einiger Orient-und I.iLersca°Zigarren161bakc untcr gleichen Bedingungen isolicrt nnd sie ebenfaal!s nacli L'berfiihrnng, in die \itra Cverbindung auf das mitt.iere kTolekulargewicht untersncht, pm. Vcrgleiche anznstellen. Die festgestel']tee spezifiscl]e 1'iskositiit dler a.eetonischen Pektinnitrat'losumgen sowie:die ]tier- ans ernecltneten nxittle•en A4olelarlargetiviolite der einzeinen Versuehe sind nachstehend angefilhrt: Probe ' spezifisohe Viskositatfc mittlere DloIeknlargroBe.. ' ' rient-T abaker O Samsun 1 133 226000 hTevrokop 1 107 181000 Ohina-Vii•gin-Tabake: Kweicliow A 1/3 96 163000 Sclhantung A IJ3 165 0 - 280000 Zilgarren-Tabake: Java 1 . 116 . 195000' Havana 88 149000 1Vie hieraits zu ersehen ist; bestehcn lvahl gewisse Unterschiede in den rfolekiilargeNvdcllten der eiinzehlen Proben, jedLach sind die Abweichtu7gen nicht so, d'aB'von signifikanten Unterschieden„weder bei den Pektinen aus den Orient= und China-Tabaken noch bei denen aus den (.rbcrsec=i'abakcn, gesproehen werden Itann.. Die 3foickulltrgroBen der aus den Oi-iantsor*ten gewonnemen Pektinc stclicn denen von Zigarrentabaken nicht naeh. ?iucli die Untersnchun.,en der Pelctine aus den ve.rschiedenen fernientierter in- landische.n.Sehneiflegnttabaken~ rler Sorte Trgofulirten zu almlichen Brgeb-nissen (Txb. 6); nur bei Havana IIc, der inlStapel f¢rnlenticrt Acvrd'e, wiesen die T:rbakpelaine einn niedrigeros 1folekularge`x-iclitt auf, nnd zwar810'00,. was auf die intensiven herulentationslicdingungen zuriickzufiiluen ist. Die lhier gwnac'ht'cn IPcststellungen stchen im Widersprneli zu dcnen von DORR [6].. Denn•ti4e Untersch.iede:,, wic sie von.n dem genanorten Autorfiir Zigarren- und Zi;arcttentab:vka angefiiln•t ieerd'cn, konnten wiL• uielit fcst- i
Page 79: fiw68c00
i 260. CorcsTArrtnPSmhtundltnrrtaDlorursiaeu.a llfi3' 2 ~:. 7. stelle.n. Wohl sinrl die Abb tun otg tnge bet der k.lntc der Otrcntt.iblke t-or- gescl'nittenci als bei dcn /,tgurontaliaken. Dies kann anch dhe Il'ekt.tite be• ~ treffen, abcr je intensiver dic angewendeten Trockrnutgs- und. Fcrmenta- tionsprozesse siitd, desto mehr wnterliegen die Pektine dem Abbau. 2eusa~~amet~fasaaratg C. Illjl n Die durehgeftiltrtcn Untcrsuclnmgcn bnachten Et1 enni.misse.tiber das.Ver- p haltend'er Poktinc in den Bi:ittern der wac$senden Pabakpflanzenwtd Uber c die Veranderungen„ die die genannten Staffc lbei d'er Tiocknimg und Fermen- tation des Tabaks erfabren. Ferner w.urdc gepruft, intv.ieweit ein Zusammeu. '' v hang ztrischen der Tabakqualttiit' tntd den Pektincn bestelit. ~ * a Die Untcrsuchungen erstrcclaen sich auf die Bestitnmtutg des Gehaltes an Gesamt,Galaltturonsaure und'' deren Iosliche und'' unlosl'iche Besteutd- ti teile-alles.als Galaktimons:iure>Anliydriii berechnet-sowie auf dieester- '' n artig, gebundenen 1V4ethosylgruppen: Anf Grund des Verhiiltnisses dieser n 5toffe zueinander wurdc der Veresterungsgrad ermittelt: A'us dem Tabak c' T< lieflen sich im AlochstfailPe nur etwas meltr als die Halfte der vorliandenen Pektine isoliereny die auf3er auf ihren Veresternngsgra.d auf ilire: tnittlere e, 11Lolekularg}•oBe untersucht tirurden. Es konntc festgestellt werden, clatl die c' Tabakpektine Acetylgruppen entltalten. - T Ans den im einzelnen besProchenen Ergebnissen war zu ersehen, daB die x qualitativen und quantitativen Veraiidcrnngen der.Pektiite in den Blattern n der waclisenden Pflanzo im Ncesentlielien von dem biologisehen 7,itstand der Blatter h.uterhalb ciner jeden Erntcstufe abhaiagen und weniger sortenmaRig ~ bedingt sindL AuE Grundi der durbhgefiihrten Untersueluuigen bei deru auf i verschiedene Weise getrockneten nnd fermentiert'en Tabaken lieLi sieh de r Zusammenhang zwisehen der Ver5nderung der Pektil[c und. der Intensit.3t der Behandlung erkenncn. Je intensiver diese war, desto starker erfolgte der Kettenabbaa der Pektine,, so daB: bei den hanggetrockncten trnd stapel- fermentierten Taaiaken die niedrigsten tnittle~en .liolektdargeswichte ermit- ~ telt wurden.. Eine Beziehung ztvischen der Qualifat des Tabaks und dem t` PektiatgehaSt konntc nicht erkannt werden, tvenn aueh in ciner $eihc von ~ " Fallen cin utngGkchrtes Verhaltnis zwischen beiden vorlag. Aber antch hier II A: ergabenn smI{ mtnistcns nur gcungEiigigo Lbtveioltlutgen. Es kmnnten weder t# an den Il'cktinen dcr atietrt- und Cliina Virgin-:Pabal'<e nochi an i7bersec- ~ tI Zigarrentabaken.signifikante Unterschiedcin den utittleren llolekulargrd6cn P, fest.gest.ellt werrlen. Die ans ersteren gcwonnenen Pelitine standen in diieser Ili e` Hinsioht letaterenn nioltt nach. p' ~ .. . . . . . , . . Q. .. oi
Page 80: fiw68c00
C'oasrenmcx Pvnrr:r und 1SticTxu.Mounsxruvx.x19C3i.2 Trocknung noch verbleibenden Pektiinci uangelagert wcrdbn, was in einer gcw•iFsen rrholwng des Vcrestcrungsgrades in Trscheinuag tritt. Der warni_ rauinafermentierte Tabalszciet gegeniiber der lediglich heiflluftgetrockneten Probe praktisclL keine eiindentipe qualitative und quantitative Veriiiid'crung; Hingegen ist bei dein entsprechenden fermentierten Hangtabak eine Ab- nahme der \Ietltoxylgruppen und des lreresterrmgsgrad'es fcstzustelIen. A'ochl deutlich gr.©llcr ist die Vermiirderiuig untcr den Bedingiungen.dcr Fer- mentation iii der I:a nnscr. IEineiwesent8ich st:irkere Demethylierung trat bei der Stapelfcrmentation ein, wie die Untkrsuclumgen an Havana IIe ergaben, Auf Grund.der oben angefuhrten Feststclhmgea kann gefolgcrt werden, ds.(3 die Veranderuaigen der Pelctiine walirend der TYrocknung nnd Fermenta- tion desTaba:ks nrehr von der Art undiTnteisitat der Behandlung abhangen,, als daB sic sortendiedingt sind. Von den versehiedenen.Trocl':nungs- und' Fermentationsproben sind au(ier den bereits ern•3linten.Untersucliungen im Tabak auch solehe an isolierten Ta3akpektinen aus den Bl:ittern d'er Serte Ergo und Havana lIc drrehge- fuhrt worden., Die I:rgebnissedieser Unrt,ersnchungsreihe sind in der Tabclle:6' zusammengestellt. Die isplierten Pektinmengen a.ls Ga:lakturonsaure-Anhydhid bew-egen sich in engeren Gkenzen, 6,p-6y3%a bzw. 6,6-7,7%, und machen etwa 45-49%a bzw. 54-57"/0, der im Taliak vorhandenen aus:llSan sieht also, daB mi:arn aueh hier nieht mehr als etwa die HS.lfte bzw. etu-as rnehr von den in den. Tabak- b]attcrnn enthalt.onen .lfenaen erfassen.kann. DieAiessunaen der spezifiscliemViskosit3t der einzelnen Proben zcigemein- deutig, dal3 die Pektine wahrend der Trocknung des Tabaks eine Abnahme der Viskositiit erfalren. Die aus diesen errechneten mittl'cren liolekularge~ Ivichte verlanfenentspreehend'- Wahremd die isolierten P'elct'rne aus deru Blat- tern der warmraumfermentierten Tabake, die einer Heifi]ufttrocknung un- terzogen Yvurdcn, keine wesentliahen Abtveielmngen an Viskositat und biiole- kulargrofde von den entspreolienden 1'ediglhich.getmekncten zeigen,..vies die Hangprobe der erwiilinten Fermeitationsart eine dcutliche Vermiiiderung auf. ICocli groJlcr war der Abbau bei den kamunerferanenticrten Hangtabaken. F•inen erheb]iehenKettenabbau erfu}iren besonders die Pektine der im Sta- pel behandelten, wie dies aus der spezifischen Viskositat.iuid \Tol'olauPargro(le hervorgeht. Die weiterhin in Tlrbellc 6 aufgefiihrteu tiI'erte tiber den mittleren Ver- esterungsgrad lassen ilm Vergleich:zu dem der fixierten Probe ein eigenartiges Verhaltcn erkennen. W&hrend der Veresterungsgrad derletzteren.bei Ergo. 1!9;2 und bei Havana.29,3 betriigt, sindi die.entsprechenden Werte der bcidem TrocL`wmgsproben . cindeuthg.crhelrt (27,2---30,1 bzw.. 37,5). Ptaktisch.un- 1963"
Page 81: fiw68c00
728-JOURNAL OF FOOD SCIENCE- Volume 37 (1972) ' Table 1'-Ca/cularedYactars usnd with:dilfer- Int weightns o/ peetin Assumed F'orSFactor, 14D.& 0.625 1i16.7 0.750 100.0 0.875 87.51.000 77.8 1.125 70.0I 1.250 slant calcium:pectin ratio of 40 mg/g;.a maximum gel strength at, pH 2.7, with ; values decreasing on.n either side of this ~i pHL Gel strength was measuredd as the ' shear modLlus, ~Althoughh the: observationn of ann opti- . mum pH f'or maocimum gert strength for a given pectivl under given eonditions is %' found frequently in the literature, no explanation for the observation hass been given. The'e calcium sensitivity of the pectin.,, as well: as the' chelating:g power of citratee will'l change with ihcreasing. pH and this may be responsible for the optima observed. Effect of calcium.concentration ! From 15-40 mh of a calcium chloride i` lution was used in the standard. jelly j~,ormulai to giveCa'r levels offrom', ~~ 22.5-60 mg Ca"/g of Hi Poly@ Pectln'.. (lnce again the water.level was adjustedd to, keep the volume of added liquid constant. I, The data obtained are presented in Figure 6. There is much evidence',ih the: i'i literature (Fitnik and! Voragen, 1970)') that gel formation is'not merely due: to."bond- j. ing" through primary valences but that secondary valences between calcium andi hydroxyl groups' also play ann important role. At a level of'about 20 mg.Ca"+/g,of pectin, gels' had high.sag and low breaking. pressures showing alackoE sufficient ]0 30 70: 90 -9' Co lcium/y' Pec tin. 110 170 Fig., 6-The influence otca/cium, conrenten rag fAll and breakingpresture (B)'..., calciimn Increasing: the ealciumt'o. 400 mg/g raised the breaking pressure to a maximum; beyond this point, more calci um'. brought a. decrease in breaking,pres- sure: Hills et al. ('..1942) alko obtained maximum strength values, d'ecreasing.on either'sider of a certain optimuriv calcium levelj when calcium level was pibtted against jelly strength as measured by a. Delaware jelly' tester. Lowstrengthsw at highcalcium levelsappear to result fionu difficultiesin obtaininga uni:formm cal-cium-pectin dispersion. (l7wensets al.,, 1:949. Im thiss case, pregelation oftenn occurs resulting in an. unevenly formedd and generally weakgell. Increasing thee calcium level to about 50 mg/g resulted.i~n a sharp decrease..in sag. Sag' still decreased slightly beyond this pointt andi a minimumwasobtained' -at around. 60 mg/g:g in'spiteof~ thefacte tha0 slightly less tham 45 mg Ca*`/gg of pectin would. havee been suflicient to. "bind" alll ttie.available carboxyl groups. The stight.increase in.sag.at very high calcium levels, is probably due to the extreme pregelationn which occurs underr those conditions. Pectin gnading. 3,Sg had beenn used„ the assumed F ant S''s values would'd have becn: 100 hnwcsrr, the true F' and S vafuess for this samp!e, were 87.5. A factor was thuss calculatuT to convert assumed F and S values to truc. F' and S values„ andd these are given in Table 1. Dataa showing:g tiree relationshipp of ttice amountt off pectinn to' gel sag and b.reaking, pressure were then used toplaCcalculated factors'against sag and breakiug pressurc andithese are'.given in Figure 7'. A rel'atively straight line relationship existed in the range of about. 9.5-13:5'5 mmn sag and about 90-135g breaking pressure. Forr gels falling outside of these limits it would probably bee best to remaket}ie'e gelusing.l a larger or smaller, amount off pectin. The use of these data ' too determine'.the true'.F or S value:of an unknown lbw-ester pectin sample may be illhstrated by using the following exam-' plo: Thestandard procedure for gell mak-' ing. wass followed using 4g of the sample. The assumed F' andlSvalues weretheru.' fore 87.5. With this particular.sample ttiesag' of the gel was 12' mmi at I.l°C..Fronr Figure. 7 the corresponding factor was0.852.. Therefore,, the true Fvalu.enasF el 87 5 x 0 852 74 2 F th „ • . . or . . e. same g or -' A' di th d d lo d b gra ngg me eve o was pe y followingsonleof'g theprinciplese used in' thee breaking pressure'e was. I 14g, givinga the grading of high solid5'jellies (IFT factor of 0.910 and a trueS''.value of.78.1'.Commrttee, 1959), The low-ester firm- . As shown earlier, sag: and breakingness.(F) was.defined as being ttre: weightt pressure valuesshoulds becorrecteile of the gel batch in g, divided by' the by ± 0125 oP'- 3.3 respectivetyfor each. weight of the. pectin samplerequiredl to degree above or below I.l°C' and thescyieldc a gel of stand6rd firmnesss having aa corrections would have been taken intn'o sag of' M5 mm at. / l.°C. The low-ester' acwuntt if readings weree not:t made at strength (S) was defined as being', the I lPC' . weight. of the gcl batch.h in g, divided by Under the conditions usedd the pH of the weightt of pectin samplc'required.tothe standard gel was3.81. However, it is yield a gel having a standard breaking quite possiFilee that other low-esterpeclin pressure of 1i26g at 11°C. These.sag'and samples:maygive:different.final pHvalues breaking pressuree values were obtained when used in the standard geI formula- with a standard gel containing. 4g: Hi- Different amounts of added citric acid uan-' th h fo b e q ere re red than t PolyO Pectin... This~ pectin t:herefore had may e requi an F'of 87~.5~~and an S:of 87.5. By using tity specified inorder~to have~.a.final pll' more~ or less~. pectin, different F and. S close to'3.8'.. values~s would be~.assumed. For.ex'.ample.,.if Althoughh cumbersome,.-it is suggested th bb th ' cas- m d b k iFig, 7-Relationn between calculared facton and ssg or breaking pressure.. a osag.an ing pressure. rea urenrentsbe incorporatedind thesug' gested grading procedure. It is possible toprepareo low-ester. pectins w•hichmay givce gels.s having breaking pressure valuesabovc. or considerably below' 1269 .. at'a standarJ sagg of 10.5mm. Such gelt will have a texture quite' different from the texture associated with dessert gels. Manuf]°""0'1' : f dessert t E l i urers o owester pect - m or o gelscontainings low-ester pectin may esrof' lh f f l ow- ere ore pre er to standardizee pectins to a particular F value and also s0ecifv'a.desirable ratio,nf~S/F. W:~ ' REFERENCES Anon. 1947. Exchan¢c Pectim b M, Californli' Feait Gtowen; Exchanee, Ontario;,CaliL. Anon. 1970a.. Cirms pecttn forma revernOlr ~ el.. Food ProeessinF ar'(4):ra8.. doers.~ I Anon. 1870b;. Celled and dryy eel mix pro
Page 82: fiw68c00
,F:%I/AlPR2L 1f)G3, 2 st;.lcichsgrnndl'eo wvurde :m 6 und rbrn~cntation i iindcruneen sindl in :aliskturonsHine iva:hrend u der entsprechenden fi. den. Dies bedeutet, da0 a nicht mehr als Ga1ak- lIa n g erwarta ng agem 313 knungr Quahta.tive S'er= isliche Galakturons3ure e, wahrend die loslichen :tibaken der jewelligen : Celiaites a.n. Gcsamt-, ders hat sich die I{am: !n ausgewickt; hier istt rrhdhung, int Iosliehen enngetret'en, ohne daB -lart vtivrde: o bestatigen praktisch. ' iiolgte die Trocknung ',maehend dem Venven- ' alu•end' der Tuocknung 'laktnronsaure'vermin- n unloslichen eine m .,gen der Termen- Kcrii.ndemng der Pek- satz zu den Resultaten n. Dies dii.rfte darin such bekannt ist, we- ngcwendeten 1Terfah- 'I I'er Trocknung grol3er itation, er .listhoxyl,nrut nen csoisze die Anderun- ockmtng sind prak- ncthozylgruppenge- r Art.. Dies kommt nsten dcr nach, der 1908,2 Tnbakysektiac und d'cren 783ntluib nuE.die Tnbmkqualitiit 2J'1 n y m V m L O > x m b w' . > v 0 a- ~ m ,. ~ a ~ A 4 y w. w A C± O m an cr = , o ~ a .,.. . p .. I 4 cQ I W c. G.. c` Y .^ p : U I O T _ I •k ., ~ .a E'' o o v a . o o R+ c .. I .. . . - . .. , 2 4 ~ c ° g m z1 x o ~ 9 F;]~ m m e0 [ c C : m o ep G0 C ~ T F M L ~ Q~ ~ W + ~ G a tA G~ ` CO ~. G9 [y 9. W Lp~ d Ej i,,. 4 1
Page 83: fiw68c00
BO1!'ANSCALGA2ETT8 paraloidiit after extractions, and omitting the water rinse after the ammonium-oxalate extraction:. The determination of calcium by silver replace- ment.is at best only qualitativeand,,as indicated by RASMUSSEN (1965)I can be misleading,, since the silver ion readily forms a salt with the free carboxyl groups of pectin or replaces weakly bound' cation salts of pectic: acid'. (water-soluble acids have been washed out prior.to~staining). ' . ~ . 11'herefore,, quantitative analyses of calcium were made. Water-soluble: eal'ciumwasm measured by .infdtrating4.905 gofleaf tissuee im 200 ml of. water for 30 min. Following initial~ infiltrationj . 2]irwere . allowed for extraetion, of' water-solbblecalcium. . Twenty-five milliliterss of the aqueous eRtractt were heated at 550: . C for 2 hr. Thee resulting.g ash, . was dissolved' in 1.5 ml of' concentrated hydrochloric acid. This solution was neutralized with 24% tetramethyl ammonium hydroxide in methanol. - Followingneutraliiation, calcium was determined (PEASr.EE,. 1964). The color development was modi- fied by add'ing 2 ml.of buffer instead of the usual 1 ntl: ~ Resultsand discussion - A)11cellular detail had.been lost.in thenormal'~ andi tender leaves through curing,and fermentation. Celll outlines„however, remained visitile in surface views ~_ or in tangential sections (e.g;,, fig. 1, A, B)~ The tearingg of' normal tobacco isillustrated in.. - , figure 1,. A. Separation occurredd througtih cells in .. essentially a straight line from the point of original separation. In about one-tenth of the cases the tissue separated between cells but only for short distances. Tender tobacco (fig,. 1, B)'.) separatedd primarily be- tween cells,, and only one-tenth, to one-fifth of thee separations occurred through cells. Evidently failure of'the cellular cement or pectins caused' the tissues to be less resistant to stress. When frozen normal tissue was sectioned on the cryostat, it separated into twoa strands as it camee from the blade: the upper and Ibwer epidermal lay- ers. Thepalisadee and spongy parench.ymawere indistinguishable and were distributed equally on the epidermal layers. Cuttingg tendertobaccoy how- 'l ' , d ever,. produced only one. stmn of tissue,, and. epi dermal. and interior parenchymaa cells could not be distinguished. ,. In paraffin-inrbeddedl normal tissue (fig. 1, C).,, identification of' the epidermal layers and; the coF lapsed'. interior parenchyma is relatively easy, where- as these tissues' seem to~ be interwoven and thuss indistinguishable in the tender.leaf(fig..1„D)r hIo difference in the amount of pectia in the two types of tobacco could be detected. ]fikdldiffi Theocation.ocalcum.was.mareyerentn normal and tender.leaves. A tangentiall section (fig. 1, E)' shows the distribution of reduced si]vq, ~ e tend il' af,oon the other li nd,athoea s mn~~144 By c unting~lver grains Ilestimat d tliel~ q l'~ . proximately 10 times more' calcium in the ~ t} tharv in the tender leaf., nOTL Although the pectins are generall)I cons,der~ be the cement that holds cells toget}ier (Es,tu, ygu~ the components of' the cell' wa12 per se eould not ~ overlooked. The. PAS reaction for total potl,~eharides in the control or non-extrae[ed leaf settq~- (fig;. 2, A,. B) indicated that one or more pollyo; charidess in thetenderleaf'~. (fig. 2, B), wremore 0 ~ 8use than in the normaP leaf:. That is, the tenderaqt section seemed to have a less intense red color; ~t the amount of stained tissue appeared to be motq Since extraction withh amnronium oxalate remot74 most of the polysaccharide and! also most of the y~ parent difference in color intensity and' amount pf stained tissue, it was evident that the pectin in t4 tender leaf was in a different form than ip,tbe normal. Further extraction,, with 4% sodium, hl,,.; dtoxide, indicated that the normal leaf. (fig. 2, R)i had slightly more hemicellulose than the tender leaf'(6& 2, F): This difference,, however, was small' and', ,probably would have little influence on leaf strengty, Finally, extiactionn with. 17ojo sodium hydroxide ~o leave only cellulose revealed no detectable differ.. ences in non.cellulosic polysaccharides or cellulosa' between normal (fig. 2, G) and d tender leaves (6F 2, H): c ~ `The 10-fold difference between the calciumde: .. tected in the tender and normal leaves by means of' the silver~replacement reaction (fig. 1; E, F) was not consistent with,the quantitative . analysis . of the leaf tissue. Unlike the res"ults based on silver replacement, the calcium content according to the e,yantitativro analysis, was about the same in normal and tender .leaves:(table 1)t .. The major elemental' differences were in the nt. ions which would, be expected to be abundant in, plants grown in, acid soil, that is,, manganese, irony, al'uminum,, andl zinc. All these cations were more abund'ant in the tender than in the normalleaf:. M'oree sodium was alsofound inn the tender than ien the normal leaf. Sodium evidently competes with calcium for the carboxyl group in the pectin chain (H. F.. RASMUSSEN„ unpublished data, 1965).. Inogi, cally, the replacement of. calcium by sodium would weaken the' leaf by forming a pectate salt more soluble ia water than calcium peetate: Whether or not allthe cations found abundant in the tender.leaf compete for the sites normally occupied by caltium' is not known, but this is logical.,If, in fact, allASese' Ftc. 1.-= C, D), and I QUAr:7 LIAT }pE I
Page 84: fiw68c00
. 262 Coxsr.enriwPrnrnr und R'ar:rcar AfocnsxnAuen 19G3, 2 investigations of tohaccoss mued and lcrmcnt.atcd in different ways, m rclntion between peetinee modiCieatinn and treatment intensity was recognir.able. The moreintensivee thetYCntment,.t.hc morcmpid wax the chain degradat.ion of thcpcctioes, so that the lowrostt average mokcular ~cighta wrore.fonnd with air cured and liulk fcrmentatcd! tobaccos.. AA comclation between tobaneoo quality and.pect.ino level couldlnot be:rccoenized, thougbin somrcases:therewns.n.rcverscrcint.ionofboth. But also.berethedeciatibnsavcrogpnerally ne ligible. :teitller with pectnres from GricntnS.andChinesc Virgiuiaa tahaccos nor those from oversen c:yar.toba.ccos,lnyr eignifu s.nt differences of theaa erage molecular sizes eould' be found. This was indeedd quite the same tritlr pectines from bnth cigarette and eigar' tohaccos. / . Literattnr 1.. Vot:ratexm, B.: Line fficthode zur gleichzeit.igen Bestiimmnngvon G:al'akturonsakue und AIethosyll in PektmprnTaraten..'F.. Lebensrn.-Unters: n. -Forseh. 89; 347 (1949). 2. WAxn,R.: ChcmiederPektincundVorkommmrdcsPektinsimTnbak..Tabak-Forscb. Ntr.4, 7'(1950). . 3. BicUcr.:xrrs, H.: Die Biochemie des Ta:baks.und derTabakver:lnbei:tuna,.S.59.,Berlinr PAUIIParey 193G: ` . 4L. ScEa[ucx, A..'d'.:: Cliemie des.Tabaksund der 3lachorka.,,S. 357.,Afoskau.1948':. 5. . 1Faxuscx, A.: Chcmie.dos.Tabakbhsttee, S. 51. p9remen: Arthur Ceist. 6. Dosa, W.; Neuu Anschaumrgen iibor dhsPektin im Tabak. Sudd. Tahakztg,. 59. Nr. 13 u. 14:(1939). - . 7. PYarxt,. C.:: Bezieliungr:n zwisclien stofflicher Zusammensetiungg undl „Starke" von. TAba.kerzeugnissen.. Ber. Iinst. Tabakforseh. 2;. H. 2„ 127. (1955).. Relationsentre1as compositibnn ahiinique du tabaac et less canactures de Im fumee. Actesdu Deusiume. . Congr. ScS. Internat. du. Tabac, S. 4G0. Brussel.Suni'.1958: Beziehtungen ze•isohen der chemiseben Zusemmensetaung des:Tabnks.und den 3Lerkmalenn des Rauches., Ber. Tnst. TAbakforsch:.G,6f>(1959). . - ,'8. PYntxr;.C.: Afethodologie db-Ia recherche surie tabao: Bu1L d'Inform..CQRF.STA Nr: 1, 113 (19G1). 9. PYatxi, C, und R. 3t*tt.ES; Erfabrungen iiberdie. Untersuehnngsmethodik des. Ta-baks: Na.hnrng 6'; 166 (1962). 10. P4arx ,.C Uber die Ta:bakfermentation. I.,llitteilung. Z:Lcbensm.-Unters. u:.-Forsch.. 92, 322(1',961): _ 11. Paarai,. C., nnd W. ]fonneNHxtr&a: Zur Analytik der Tabakpektiae. Ber. Inst-..Ta- bakforsch~ 9;.30G'.(t9G2): • - 12:. Liinrxs; at.,, und.H. Fe.nseu: Ziir Kenntnis dcrPektinstnffe. Justus Liehigs Ann. d. Chem.419, 1 (1941): ' 13. Pn}as5,. IV::: t,`her den \Iethylalkolmlgellaltvon. 'Pabukcnn und. Tabakrippen- Z.. Unteas: d. Lehensmittoi. 77, 372 (1939)~, - 14•, voN Faz:usaneaay.Trr~.:: Zit. imch Lit. 13. 15:. HxNCnxrN, F: A., nnd G. Scnsxrnsn: >;iber <lie. Veresterung: van.Pektinstoffen., Ber. Dt,Chem. Ccs. G9„ 309 (1936). . ' 1G:. Soncr-rnrs,. C., nnd U..Farrscrnr. Uber dia. Veresterung: der Rektinstoffe. IIL'.Ilittei- lung, Ubcr die Alolekulgrirllo: der Pektinstoffc: Ber. Dt.. Chem. Ccs. G9,. 2537(193G). 17:. Htxcttmx, F. A.: Nouienklatur, Stbchiometrie und ;Snaiyse ;n: derPckt'inchemie:. Makromnlckularo Chem. 1,. 70 (194i).,
Page 85: fiw68c00
MAR 17 1961 Nov. 6, 1956 D. BANDEL Z,769;734 . TOBACCO.SEEC'MATERIAL AND I[ETHOD QF F0RlLINC Filed July 14, 1955' CLEAN and CLASSIFY TUBACCD DRY GRIND. TOBACCO 1 MINGLING TOBACCO PARTICLES WUTH VfATER', and ADHESIVE FORMING TOBACCO and ADHESIVE INTO A SHEET I' I WATER + PREPARATION of ADHESIVE ROLL af FI N I SHED TOBACCO SHEET ADJ!WSTING' MOISTURE CONTENT of SHEET' ~ MATERIAL ENDLESS FORMING SURFACE %NW£NTOR, Dovid Bondel O O ~ ATTORNEY ~ N
Page 86: fiw68c00
!O 7 4i .e 4432At Selhctive ention excbanga'one eross.linked liectin..' y V'IndmriP (SlocakAcad. Scr IIratislava; .Ct.cclr.), nr %resfi.1968,2?(0),.-IOI~~'i (d6ug):. fhc.csdlanheof Caand', . .. K rouson oross linkcd pcctin contg_ dilfcring' amts, ofMcO, ,. gwttps, wasstudied. Cotnt. allplh pectin, washed with, 00°~ . Pt01 f acidified rrith 5aa1. concd. IICh in 100 or1. of 50 3^' :rv , 0 . ~. dCgneof cstenficnfimt(/L) and..i8,000'av,.mnL wt w,rs~,nsedt, ' 1 cctidldibhdli c ac was prep. front pcctnyYrnyss with ICOIC and suh:c,qucnt aciiliGcatiwrwith.I1Cld to give cutn7>dS.of OE attd. 17; 000 av. mol. wt. -The pectin and pcelic neid were cross-linkcd . bYttcatn¢ent.tritli 1fCIFO:uod HCI, and gclaot.suspcnsiou6of tlworos-liuked suWtances weree washud willt fYOll. mrddried ' ' togitiGti deif _5f;i $ '1'h liC ve escrcaongrr.c pectn o„..c18O:g forrniug'nielllglcuc' bridges was dctd. iadomctrically, nnd todct- i lhecschangecquil..thes.unpics of a dry iun cscHangc res'in in ' K•' fornr n'ere-.trented wi(h OAu,VCaCls aud KCI withh a known ratioof'Ca and-K ions for 4S hrs,,,tvitll thecquite re.wltrd'aftcr aboatt .+.4hrs. Tke dry cation exchange rcsios from the peetin. -` ° ' utid 5 f fiC19O f thl bil coane,onntug rneyencrrges. The least. -swollon resin.was Zerolit.^_96and thc most swollemwas the cross.. . litd:ed pcctin. Cross-liitked pectin sel6eti.-it;•for Ca'" decreascs . ' triRli.incrcasing E,, with.h the same dependence on G as for tlre cef- erencc synthetic carboxyl cation eschangc resin, ("/,crolit 2?6), ~ The cross-linked pectin. was rnore: sclectiee at high L• than mr-: eross_linked pectim ~ 35634 Pectin' cation exchangee ~9librnsk}',, Vladimir7. '~ ..~ Huniak„ Ludirvit Czech. 140,713 (CI. C CI1).. IS~. htar 1971, Appl. PV' :1E4fi7-69, 30. hiay' 1969; [2' mp.. Snlpnd. pertiil, was ' Ef)iihidluNdi (I[I06R98)i L wt eptroyrn) ,--1 to gve an CItOSSIINk aciil'- and alkali-resistant catinn.exchangcr useful for, ciirmnatog: For ezample; s:Qrond.. peclin at 1u20°was treated wilh. 0.5-11 molh of 15-40% NnOH',~ and, after. I hr 0.2.5-1 mnle F was addcd'd a0. <C0" to give a: whitee powder having, an exchange capacity of3.2-3.81nrequiv:/Y,. L.J..lOrhanck ~ ~4 484'.I~v " &cctin. Ttnde Gordon A.; Christensen..Otto '(Copenhagen I'eetin nE t. )'td-, LiIIh.Skcnsved', Gen.)., lndl Gums,.2ndEd. 1973. 409(1 (Fnk)'. EtlitedUylbhistler„Rug ILester. Acarlenric: New York, N.. Y.. Prudn utilization. . structure, liiosynlhesis, and. pmperties of peClin 09000-C9-i]I • were reviewed with 199.refs. . / ~ Physicochemical study of lieet-sugar-jLiccpurifieaGnn. Vt. The li8erationn ofealciumf from ealctumpectatem by . oaturnlionwtlh carbon dioxiila.. J. ~ 1?`~t: n, R. Kofut, hud ~r hulinor5. (Slotinsl'S akad. wicr rt0ulava, Czcch-). CL r,.rursGIl, 4'07 77(6erman stnumr y); Listy crckrocar. . 73, Y70-1'(1057)1 cf'.. C.A. 51~,.7745P.-The reason fnr the innv:ue of cleetrokinctic pntential fof the partirlcsin tlic d4vr.ttion.e.dceinoor libe beet-sugnr jidce,.elarified with linte ~ und "ArW'' "wilh. COv, wa:sstudicd. Thctheoretncal eun- - Q . dUi~mo-lor seltihE free.Ca.frotn Ca.peclato (1) .by''$atn." . with C(l; wi•re proveu experintontally< In tlmpuresYslew , ~ wi0t distd''.,:11_Oor lii!;>o sucrose soin. Ca bound oatimcar--Iw,cY 6'ruuips uf pectiencid' canl be set free audfnnm ionized Nc.nl",cp gruupsby "'satn." with, CO'_ even inthen pnesence . .~ f N11011. . t hcrc is. a douhlce rr.rclron hclwcen I and allh. . W , (Q ' r nl m;drwlucli is siiuilir to the rercttnn.occurrrng:in the n I 'stlu. A.t'rcrliuin cacessivc ctT ctac :dky. 1ud w'itI ~i °t,rrr-satu," of ntudily 14t juice to plIof 3nd I hn ci.t hc s:wm doublc reactinn w'hiuh results in tbee form.t- IiipnofCa,wdts.nn4hn.upthetli•fccatiim.cal-c:. . J.ld• ~
Page 87: fiw68c00
ar,ur:.nsuo-s , t063,g e glcichen Tendenzcnaeigen 1~ rergebemsich folgende lu• Pflanze }seisen den grop'- Ivppen und Gesanrt-Calah_ hiachsten Geresterungsgrad', nnd, }favana IIc zeigen. Iit nd „iiberreif", finden wir bei fier haben die reifen BPStter grnPPen,wiihrend: dio.tiber- dazu vcrh5lt sich anch, der i' Blatter, dbren biologjscher. .n der Pflnnze eine wesent- ar ein.e gewisse Paral'lelit3t ab. L)i zu erkennen. In der 'org3nge nicht sostark.vor- merx~~ahnten Feststellungen. ;en zeigen keine eindeutige hsenden Tabakpflanze gelit iativen Vernnderungen der ?ustand der Bliitter inner- ,r sortemnif3ig bedingt.sind.. n 13]<i.ttern der waehsenden ?if isoliert. Mit Aiilfe von m~.•,losungen bcstinnnten rund des Verli:idtnisses der Insiiure-Anhydi•id den er bereits erw.ihnten Weise ufe. Die Etgebnisse dieser A,, •1'rnet als Gala]Eturonsiiure- f Gesaurt-Gnlakturonsaure. en. Isolicrungsmctbode: mitall ntehr al's die }1Lilft'e zu n Proben jereils einer }an- :eh die gleichen T'endeuzen •egEltn.lt des Tabaks zu fin- gFn aus dom reifen nndlun- ch.hiihor al's diejenioen ans '1DC3, 2 7hdinikpcLtinctmd'..dern h:influ3 nld dic7ltbak/tnnlitnt . 297' !. W SII M w d w x m a d b K ~ 0 0 M 1' y. O ~ m C ~ .Y w F ~ ~ ~ N N~ C ~i. LV M C 5 4 . i~N . I T o e F5 ~ oo~ .C .-..-Y t~•l S GI OJ M C: .~.a .~j .y OI~. N M OI', .Y M M CV ~ :N - .Y M~ o O C•o ~ m~. W Y y C ' C d~ 0. ~ a v c ~ c n ~ A x`E ~ d ~ m m el. 0 [J Rm O . M-Y o- M . e ~ 5 ., ~ •~i .55. L~ .y T U' ~ a 0 Cy ' as ~; G LV ^1 6
Page 88: fiw68c00
-. IRO e - . HORaSS AND B'PAtNBSS ~ cule ie; in fact, involved (Aspinall and Fanshawe, 1961) and the forms- , tion of hydrogen bonds'would not seem to be.precluded on these grounds: The protein gelatin readily forms gels in water,, or in sugar solutions, '" and the gele are easily disrupted by heat, the effects being reversible on cooling. Many compounds, of which urea and potassium thiocyanate are among the more effeotive agents (Courts, 1958), act just like heat. . and liquefy the gel, If the compound is removed (e:g., by dialysis) gel formation again occurs. These effects are attributed to the breaking (liquefaction) and re-forming of hydrogenbonds of the type . -C-O... H-N-, involving the peptide bonds which join the amino-. acid residues to form the polypeptide chain. T}iis type of hydrogen bond is lees stable than the -0... H-0- bond (Pauling, 1945). If hydro= gen bonding plays a major role in the stabilization of acid-pectin-sugar gels, then the addition of urea or potassium thiocyanate would be expected to decrease the strength of the gel and retard the rate of gela- tion of the sol. In the present series of experiments attention has been ' concentrated on the rate of aggregation in the sol,since this is readily fol- lowedviscometrically. When used to follow aggregation of maoromole- , culee, viscosity meaeurements provide only qualitative and not quan- titative inforniation, but this is not regarded as an important disad- vantage at the present stage: Glycerol has beeri found to be as effective as eugar in assisting the formation of acid pectin gels, and has been employed here on account of the practical advantage, of using a liquid in the making of.the initial solution: Experimental The pectin used in all the experiments was high methoxy commercial . apple pecttn. It was not further purtFied. The following analytical results were obtainedi ash 3.2 per cent; moisture 9.2 per cent; polyuronic acid . content (McReady, Swenson, and Maclay, 1940) 58 per cent on ash free, ~' moisture free basis; methoxyl content (Vieboch and Brecher, 1930). 7.8 per cent ash free, moisture free. Tliie.corresponded toa77 percent .,. methylation of the carboxyl groups.. A 2 per cent stock solution of the pectin was prepared in N lactic acid using a Silveraon homogenizer. For individual experiments 10 ml of this solution was pipetted into a beaker along with 75m1. of 60.7 per . cent glycerol solution and the whole stirred. Finally it was made up to 100 ml. with distilled water in a graduated flask, the final glycerol concentration being 50 per eent and peetin concentration 0.12 per cent. ; When additives were used they were first weighed into the beaker before tee anrutton ot tne pectm somtron. rSCrII'-e7dOSaOLWAT6S 626TSY6 The solutions were then heated at 95° for five minutes and the vis• cosities measured immediately on cooling to 20.0°. The solutions were left'at room temperature (15-20°) and the visco- Qities again measured at 20.0° after one and three days. The reeults are giveri in Figures 1-3. The'specific viscosity plotted against the molar concentration of the added substance. 0stwald viecometers were used with a bore of 1.5 mm and flow times 0 0.4 0:8 1.2 " 1.6 UREA (moles/litre) , Fipure 1. SpeoiSo viscosity of pectin (0.10 per cent) in 50 per cent glycerol a0 ' 20.0° in the preeence of nfe. O START X AFf ER 1 DAY p AFTEIt 3 DAYS 0:4 0.8 1.2 1.6 POTASSIUM CHLORIDE (moles litre) Fipwe $. Speelflo viscosity of pectin (0.10 per cent) in 50 per esut glyeerol at .. $0.0• Ia the preeanoe of petailaiurii ofiloride
Page 89: fiw68c00
fo: 107'(t957) t~ :atorial t r by the te.meridional stretcliing. af rm lxgins to dientiirg, that irge numbers 'apiliary con- ,ttcrpretation a monolayer ar, indS'cating Isorbs 11 mole basis or the the operative rmigalscturo- r. Consider- ions,;this is a idsorption on performed as a well defined tE6.l Emu. = 41 e 6.0 .. av .. s A0. 0. .. 40: - s0 120 160~ m6/y . -Flg. 2: DiQirentialstandard frea.energy (in ksal.{mole), (O)~ diErereatial 'standardbeat (in kca1./mote) (0), and ditrerenti¢l'.standard,entropy (in e.u.)'. .(O):functliuna.of water vaporr sorption of calcium pectate. minimum at 1 mole of 112Q/1 mole of inonomer„indicating the completioni of a"monol8yer: ' This is in good agreement with the B.E.T and H.HSL theory. The values of -a1$° and -dS' at this point indicate that, due: to the strongBinding.effect of calcium„no more free space is present for the allocation ofYurther water molecules. The consequent rise in the: -611° and -GS° values to 10: kcaP./molo and roughly to 25' e.u.,, respectiwely„ 'undicates'that further gdsorpti'on is no longer localized, having, two degrees of freedom, and, therefore, it can be taken as a mulGlayer adsorption or - . solutiomof vapor in the polymer.The above,results also throw light on the "calcium bridge"'hypothesis in gels. IDeuel et at;6'claimed that not every single calcium ionbuilds bridges between two carboxyl groups;, but that calcium exists in a heteropolar bonding establishing an overall electrostatic equilibrium. Tbe present -tiata indicates that, at,least in the solid state, "calcium bridges," as such, e dst, andi contribute very much to the restriction of the swelliiug of the polymer. References 0 I medd'denal(O), 1 -1 rel.tli.e v.por14 F. A.Bettelheim, C.. Sterling, and D.13. Volmem, J,P°tymer Sii., 22; 303 (1956). ~. 2. R. A. Bettelheim endiD. EL. Velman, J. Polymer.Sct., 24..415 (1957). ~.. CC
Page 90: fiw68c00
~ Water-in-oilleamdsion with the appearance and eonsislcnry of' jm•tr in N ' ' gar c { Vcrrni rl CcztillFOlifbikA( .....c•c-carccnd. Cro-, & L.wn.. Neth. App-l~,a06J177'(CI. A 23d),, Ucc:.3, 19()5„ June 2, 1904;; 6 pp.. An edible emtdsion is prepd-.by'ctnulsifylitg.75'- 40'.pt'trts by wt'. water in.25-60 parts liy wt. fat with a thicCening . !ageut added. Preferably tlle fatphascis enm os f f i ' , p er o a m ... atn oF . 9WJ0 w6. ofo'refiucd oil liquid at'n room. tcmp., anrl 5-A0 svt. °fa, -refiaed.fat solid at. room temp. In order to obtain more ol - p y . I ' nnsatd.. fats, soybcan,, sunFlowcr;, corn, or sa111otver uils may be .'. used,^ Suitable thickening agrntss aree earbosymethyl, cellulose, ' agent inthe fat phase is the EtOII-insol Gnctibn oF ]ecithirn . ';. Art emul5iooeontg: 45-00 % linolcic acid in the fat' phsse may be ' ^ prepd..asfolloes. To 390 parts of amist..of 80% refined sun, flower„corn„or, safRower oil and 20~, 0 of.a hardened fatmt rr40°;, at 35-45°, is'added 10-parts of the EtOII-insol. fraction of' ' lectthin.. The mut. ismiicd and f).carotene artd'd mar a i g r uc 9avoringg is ad'ded.. After this, &S.`r95 partss of'an aq.. soln: off ° parts pectinn at 40 is gradually addcd',whilc.stirning vignr• ~ouslg. After a fine dispersimt is', formed, the produe3 is cooled' . quicklyto about 10°. Harry Dc Moor '-31g9oe Proteativr coatir.gs for. solid and liquid particlrs for. ~ aantrolled release. National Cash Register Coi (by John G. ; W:LQnCr). Fr. 1,468,601 (Cl. E0Sj)„F.eb: 10, 1967; , U.S..Apph. .-D-e`a. 2'2„ I9:$; 8pp.. Protective coatings.for solid andd liquid . particlesare' applied by liq...liq.. phase sepn, too protect thc par- : ticlks from oxidative degradation, hinder the contact of incont- patible.substanees in a.mixta of elements, mask undesiiableodors andd taste, hinder thee release of the parl'.ieless under pressure;. . assurercgulated reSeaseof the product in variousmedia, e:g. the stomacli or intcstines„stabilize th.c product, and iinprovc the case ' of' handlingg corrosive and irritating', products. A sohr. of a macromoL polymer fonning.a liq., phase isprepds in a liquid, the . fimniscible liqt particlesorinsol.'solid particledispersed in t}le so16., the particles coated with thepolymer by adding a. 2nd liq.that'. is iusol. in the Ist liquid and anonsolvent for the polymer ' and particles,.the.coating coagulated, and the.eoatcd particl'es- scpd. Thus, 8 g, rose oil was dispersed in a soln. contg. 100 g. gelatinin 900 ml..IlvO'.at.45°, EtOti added until 55% was prescnt'. - to sep: agelhtin-rich phase that eoatslhe dispersed oil,, the mixt. - eooled: ..at 5°'to coagulate the coating, and tlte.coatede oilsepdl fronr tberesiduallllquid.by'centrifugation,.washed with EtOH,. ~. and dried togive a coated oil for use as a batlioil. Other eoat- ablie materialsincludcd quercetin,.sulfonylurea, a.honey emulsion ,. itr: corn and castor oiR„p-hydtoxyplrenylamiuoacetioacid coatcd: . with Codex, white wax;. Fe, civet, Caal,POi)i, Na (2,4-dichloro- ` pbenoay)acetate;. murphine, pancreatin, hasPO., methylsilieone' " oils,aq.cornoilennilsions,Alizarinecyaninedyes,andnmaranth... ' Other polymer coatings -includc agac-agar, pectin, fibrinoven„ poly(vinyl acetate), cellulose acetatrbutyrate„ benzyl cellulose,, maleie.acid-sFyreaecopolymers,,andEtcellulose: CKPF ~ Ir S7ess-strain and creep velations of pectiit gels. C Li .. Wat- , -son (Univ. I7,itiai Columbia, G`aneuuvtr, Can,). JAan6=1. - , 3F(3)', 373-80(l0G6)(liirg) Sugar-acid peetin gels w rv.cxamd. willr respeut.tastress-strain relations unrler.di0creut typesor , loadinp; imfression,, compression„ andi stntia The gels cx- • htbitcdplastrc flow (nonrecovrrable str m) at, loww stress, and Q/~ responded clts,licallyat htph stress. There wasa dcpendcttce of r strcugth critcria on the rate of'straih when tisted uw both the ~ pl'astfc Oowrandl elastic regiiuu.. Ouly snsdl diffcrenees were nb. . . served betweeu mono-and disaecharitle gels'whem[rsti•d by either ~. ., ' aanpressinn orimp.ictt There weresubalautial dtRerenccsin creep.behavior behween gtlscantgs mnmr..tnddivteeb trndcs, tl/c W. t.lhttcr supportirUt greatrr sttcsscs for. longer times. All types'or (Q'. .' gels ea:maL showed a typically "brittle" fitilure. Pcctiu drqra, ~' datimrdttring buitinYd appcanod tohave litllee cffcct oa sulisequmut '; thrological prnpcrties„ It is suggested that att hast'S ep><smf -. ,' bouding are involverl in the sugar-ncid. -pocliin gel.stnrelure.,t a wcnk,bondnblc to refurm a(lerdisruptioo„ nudd a stronger bnud ;t able loimpart-thc ehtstte.proprrtksslwwm bythegcls.at higli ;. atresses,- Morlon I;tdc•r ~ .
Page 91: fiw68c00
fA r H. Ml HALTER ETAL 3,106,212 ~ TOBACCCIAANUFACTURE Filed May 21, 1iB62 FIG. 2 NH2 11 FIG.I C ~ NN\: N N C=O II 1 HpNz uN-C C-NH4 , ~ UREA • \.N,~ FIG.3 NH•CH2 0H N~C\N II I MELAMINE H0H2C-HN-C \ / C-NH•CHTOH N TRIMETWYLALMELAMINE FIG.4 NH•CHr0CH3 NN . ~I I CHSOHzC•HN!-C\ /,C-NH•CH2OCHa N TRIMETHKLETHER'. OF TRJMETHYLOLMELAMIRE FG5 FIG.6 H H ,N' CHZOH H-C=0 C O= \ N•GHg0H FORMALDEHYDE H 01MElfHYLOLUREA INyENTpRS JUSEPI! !//NCFNT FfORf BYNOIVARD MART/lJ /1ACTER ATTORJV£Y'
Page 92: fiw68c00
tyt inter. • F Paliy4t 1 ,tt ir zation~af 1! aceoptl II trend a noftht (kABtik of diQw, I uniyue, -. il' ln ypy- MeR asa, atlures oI reoendy, sence d CALCIUM AND STRENGTHpF LEAVES. L ANATOMY AND HISTOCHEMISTRY . . , ~ H: &: RASMUSSEN} ... • nr1,,Vtment of SoilsandClimatology; Connecticut'.Agricultural Experiment Station, New Haven, Connecticut..06504 . . . : : ABS•d'RACf . . . . . Microstopic examination oC the tearing,pattern of cured, fermented tobacco leaves revealed that a normal leaf tears in a straight line.throughe cells, wbile.a tend0r leaf'tears in an..irregular pattern betweemcells: This.suggests.pectin alteration as a.p:obable rauseof tender tobatto:.. Histological emamination: indioated ahat ln. normal leava.tlie upper.and luwer epidermalllayersw•ereintact and distinct from the disintegrated Paren- thyma of: the leaf interior. The epiderms of ttnderleavesivere not uniform and were.usvally not dls[ina[. -fram theintvior parenchpma.tissue. The cell-wall components (pectin, hemicellulose, non-cellulosic poly- ~ saecharides, and cellulose) appeared to be the same for both normat.and tender.leaves. The striking.di6ur- ence between normal.and tendertobaeco.was ih t~Le calcium<ontent. Appvoximately 10 times more caltiumwaslocalized in the aormal than in tlie tender-leaf cell walls and.middle lamella. "-~-. Introduction Material and methods ~ ~fphot6. I Since catctum pectate nlts tne. spacesoe0ween Jmatt pieces ornormaf: ana tender tobacco leaves's rve bet6 plant eells' (ESAtr, 1953), it presumably eements (N"uoJian¢ tabacum var., Connecticut Shade) were for tyh them together, making a substantial organ or tissue immersed in a drop of water on a glass microscope ltionff idiidlell Thi idlid Aftthl bttd th tis from a: popuan onvual cs.ss prove se.ereeavesrecame saurae,esuee by thee disintegration of tissues into cells by pectic was.pulled in opposite.directions by means ofteasingf raz)•mes. The investigation reported here reveals needles. The resulting separation was . examined. ~icismf,, that a much less drastic phenomenon, the mere microscopicallytodeterminewhetheritihadocCUrredy ipt. f :i ortage of calcium, weakens a leaf', permitting the between or through cells. cottstituentcells.toseparateunderiittle.stress. Leaf tissue was frozen on theFteon block of a °Tender tobacco"'i's tlie t'erm.used'.in the cigar cryostat and sectioned at 32 p. These sections weree r Phniet 1', industry todescribeo a leaf whicb wilil tear. easily. mountedd on glasss slides coated with aa gelatin ad- The problem of tender tobaccohas been knowbfor hesive (JEarsEN, 1962) and were studiedl without leir '„ i many years. It was detectedrin Cuban tobacco as staining; problemap earstiohaveincreasedl The lyast940! Tissuesfiomlivin reenhouse- rowntobacwas . p . g g,g ,,. T,- 6 tar fna~y7 +u wc f.°a° .J ~r..:a.a, vu~a u.c n.ucmc ra ncu.ae~a.vur tmcu~auu.. ...uu.rcu rrvuun.~~.uuu~ rcreucr 1.16:192. I . probably due: more to increased mechaniiation than leaves were fixed in formaldehyde-alcohol-acetic atimu,d toa.greater frequency of'~ tenderleaves., acid (JoxnNSEN, 1950)~„ dehydrated, through. aI' Ba' Growers and processorss believe that tenderness tertiary-butyl'-alcoholi series, and then i'rrtbeddedin appears. during fermentation, tbelast step in pre-paratfin.. Sectionss werecute at'~. 12 Jrand affixed toa paring tobacco. Thus, temperatures warmer than glasss slide with Haupt's adhesive. 110' F and moisture contents higher than 20% mark- Some sections were stained with safranin and rdly increased the incidence of. tender tobacco; the counterstained with fast green. To observe the loca- ttsultingg loss off strengtkh wass attributed to pectin tiom and quantity of pectin, however, thee paraffin alteration or breakdown of the middle lamella was removed from other. sections, and'they were (AwasxssN„ 1963). stained with ©.0002°fo:ruthenium redi for 20 min and At least four types of tender tobacco are recog- mounted in glycerine jelly. Since the stain fades, the nized: (a) tobacco with a thin lamina, owing to sections. were photographed for study. adverse growingg conditions; (b)') normally thick and Afterr sectioning and paraffin removal, calcium dark-colored.d but easily separated;, (c), normally was identified by thee silver-nitrate-replacement re- thick and7ight-coloredbut easily separated„and (d) action (GoMoar,.1952). This reveals: the.location of biologically degraded leaf: The second and third calcium in and between the cell walls. types -were considered in this study,, which was - Possible differences in the cell-wall constituents undertaken to determine the factor or factors ~ re- were observed by means af the cell-waIli extraction !ponsible for tobacco leaf strength and tissue technique of JENSEN and Asfrrox (1960). The tech- i - nteit gry. nique.employs the.PAS.. (periodic acid-SchiH'sstain) fRre~er °.tar.«•im.,a.rmert eefaertic,di„rP. Ml~hl~„ reaetiontostainthetissue:lItwasmodifiedbyfixing StateUnCversiay;,East.Lansing,.Michigan48s23...' . °~ thee tissue chemically,, coating the sections with 219
Page 93: fiw68c00
CIIAVFR e- 19c3 . 2 'elunmgsarten~ walir nc d. `st ein erlieblicher ammeifermmntation ~ aod 117,9 f811t„ was aufi noch stiir]:ercr Abbau. 'j iiren der iur Stapel fer- viir Abfall des Vereste, ;iure und denti Pektin. stciuurgsgzade (Tab. 5) ne, so ist festaustellen,. ,en.Wie aberr antf Grundd en konnte, ist eine Ver- lfes im Tabak Zriihrend :t beobachtete Erschei- A Aang al§ anch in der ztm vermutlich dahin- la^tvppcn in den Pektin- 'cn eincr Erhiilcung der 1Sed ingungen der I{ am- lieringsvorgange statt, bin die isolicrt'en Pek- Trocknungs- und Fer- Easigsni regehalt. Es e~ f~,I die keine 3cetyl- g~ n Schtivankungcn [2]sowie Karcousov F,ina Prfifnng d'er in waigen Gehalt an Ace- "sehiedenen Tabakbc- asgedi•iickt in. Prozent, idi der Pektinc - sind f 1963,2 Tabnkpuktine.mrd deren Fffiflnf3 auC'dic Tnbnkqunlit8t. 25ti Aiis den vorstchenden Angaben ist zu crschcn, dall die Tabakpektine AccLy]gruppen auftreisen. Wiihrend der Troclcnung in der Hcifiluft-Anlage und der anaclilie0cnden Fermentation irn Warrnraum mut vorheriger Re- drying-73chandlung hat siclrh der Acetylglvppengehalt praktisch nicht ver- andert; kdiglieh naehb der Hangtrocdcmmg, ist eirm Vermindervng um 0,22%, zu beobachten. Einc weitere, aber nur gcringe Abnahme konnte bei den Pektinen aus kammerfcrnientiertem~ Hangtabak ermittelt werdcn, Irm Ge- gensatz zu den Fcststclhmgen von Krctvovsov [20] ]icgt der hicr gefundene Essigsiiuregulialt der Tabalcpektine niednig. Obtvohl beiin VergTcich der einzelnen Werte vor der Ttocknung (fixierte Probe) und naely dieser Bchandlung soirie d'er Fermentation eine geirisse Tendenz zu er].cnnen ist, kann auf Grund der I.Icinen aufgetretenen Unter- schiede nicht von Ncesentlichen Verfinderamgen der Aeetylgruppen in den isoliert.en Tabakpektinen gesproehen werden. Untersuchungen an handelsqual'sfizierten Importtab~aken :liiie sclion erwalmt, wii'd meistons die Ansielht:geaul3ert, da0 der Gehalt des Tabaks an Pekfinen inn umgckelirtenm Verhaltnis zu der T'abakqualitat steht. Da wir cine andere Dieinung vertretens haben. wir an versehiedenen fermentierten Tabaken unterschiedlicherQualitatsgrade eine Reihe von Un-tersuchungen vorgenommen. Die erhaltenen Ergebnisse sind'ausden Ta- bellen 7-9 ersiclitlich. Aus ihncm la(it.sich erkcnnen, dal3 der Gesamtpektingehalt als Galaktu- ronsi3ure-Anhydrid der iuitersueht'en Orient- imd. China-Virgin-Zigaretten, tabake mit 10,21-12,22% (Tab. 7) bzw. 11,0-12,12% (Tab., 8) f'estgestellt wurde. Fin Gegensatz dazu fallen die Werte an den Zigarrentabaken Java und Ilavana mit ciner Ausnahme (11,94%) deutliehb gl•olrer aus.. Sie betragen 13,26-16,17% (Tab..9). Innerhadb ciner Sorte besteht zwischen den ver- schieelenen Qualitatsgraden im Galitkturonsiinregehalt kein ausgepr5o er Untersdtied. Es wurde tic-olil.beobachtet, daf3 besonders bei den Orienttaba- ken versehiedentlich mit steigender Qualit8t eine ge visse.Abiahme des go- samten und des unloslichcn Antcils festzustellen ist,, jedoch kommen die AbircicInmgen allgeuieinniehtso stark zum Ausdruck, daB man dauaus cine Abhiingigkeit zwischen Pektingehalt nnd Tabakqualitat ableiten konnte. Da.sselbe ist. fiir derc Pektinmetho.ylarnppengehalt und den Verestcnmgs- gn:1d zu sagen, obwohl in eincr Rcilie von Fallen auch hier die bessaren Quali- taten der Orient und.China-Zigarccttentabakc einen etwas hoheren jVert.zei- gem. Lctztcres stcht in li_]bereinstimmung mit der Feststellung, daf3' eine ' Verrgro0crung, des. GohaStesan \rethydalkoholl in russischen. Ta.bakenn mitt einer.Steigerung,deL Tabakqnalitrit verbunden ist [21].. Dies, aber wider-
Page 94: fiw68c00
aaf. JotDfrvALOF Poilnir'ilsell~fYCi' yol. x+4.ty rsCtIT{Na,.10T(t9;4) with,1'.38 A. for pollyg:dhcturonic ncid.3i Also thc valucs of the equatorial spacings indicate that thc chains are hefd macli closer togetlier by the ionic bomrds than byiiydrogeu bonds. Tlie small change in lhe rneridional reflections with rcl.2tive vapor pressure indica,tes also that lihe stretching of chains is n»nimized by thc cnlcium bonds. Consequently, one can observe that the adsorption isotherm begins to rise sbarply at a low relative vapor pressure (P/Pi, = 0.25), indicating that the calritnn-bondedpolygalaeturonidechain cannot allocatclarge numbcrs of malUilaye rs an4the solution process (or, in older terms, the capl I lary con- densation): startls at a rel!atively low moistura.content. The interpretation of this isotherm otr the basis.of BLFs.T. tlicory,' indicates that a motiolayer is.contpleted wlcen 0.100 g: 11:0 is arllsoibed on 1 g: of polymer, indicating that the molecular weight of the operative monomer which adsorbs l mole of water is 180. The interpretation of the isotherm. on the basis of the Huilwood.and: 1-Iorrobimthcorysyields a molecularweigbt for the operative monomer of 175. The molucular weight of the amhydrocalcium~ galacluro- mate is:145, assigning one-half calcium atom to each monomer. Consider- ing the inaccuracius in the B.E.7f. andR.hl. theory interpretations„this is a faiily.good agreement. The diffcrenti'ali thermodynamic functions.of water vapor ad'sorption on calcium pectate are given ib Figure 2: The calculations were performed as reported previously.2 The heat.and entropy functions have a well defined EOa tes MS w ib asl !.6 aa 0$at0:6 0.6k0 P/P° Fi6.1. Adsorptlcn isotherm (4)'.at'.29°C..:equatorial (G) and meridRonat (0) ~ spacings of s-ray diffraction of ealciumm pressureb. pectate at different relati.e vapor ~ ~ ~ Fi~g. 2. 1Hr, etandand heat (O), (unctions c nrininmm at I of a "monoP•r• theory. 'lrhre to the strong I allocation of f and -dSe vrr indicates lliat of freedom, a solution of va The above r gels. Deue1 e between two bonding estaE data indicates exist, and con polyinec I., F. A. Bettei 2. F. A. 6ettc
Page 95: fiw68c00
r 76.3 82'.8 74 6 226.aoo 181,000. i~ 163~~,000. .. . ~. ~ 280,000~ 196,000 ....149,000" :. 111.50 75.0 73'.1'~ 73.1 > 25.4 2510 26.9- 26'.9 [ . 0.566 0~.5650.583 0.590~~ 5,46 4.97' 4.42 5.36~~. 5.13 .~5+30~~ 5.54 5.26~ 3.02- C13~:Q 30',0~~ 27.3 24.3 29.5 _. 28.8 29.2 30iS/'28.9 27:6. ~2gL2.: ~, .. . ~ 468 ~ "^ `3.. TheelfeM'~.arpedlhs.ontohaccoqualily -Asmcntioned above„ pectins arce usually con- -- siJered to'be amongg uhoseeonst'ituents detrimental • totobacao quality:. Aswe~ inclinee towardsa di(ferent't view,, we havee investigate& a~serics'a of Icruanted;; eommercallyclassificd'tnbaccor.; thc ~ _raultsorwhich~.arc~giveninTablcs7~to~~9:= ~. The total pectin content af Oricntal tobaccos was~ 10.20-12122 percent (Table 7) and of Chinese -Virginia71.00-12.12por ccnt'(Table.8):lavaand Havanaa tobaccos. (Table. 9)) eontained' more, t3s26'-1617per ccnt.t withoneexccption of :~ 11.94Iper cent. 7here.was.noconsistent dilkrence , between gradess within types. Insome ofr the Orientai' tobaccos thercwas asligfil'.decreasein total gafacturonioc acidd and in the insoluble . fmcfionn with improved quality,, but the differences were not consistent. The same appliess to the methoxyl groupcontentand.degrce of ruterifica- lion, although thee better qualityOriental and Chinese tobaccas sometimcss had hi'ghar values. 7fiisis in,agreementwilhobservations on. Russian ,.tobaceo(11)in, which, contmry to thegcneral opinion,, improved quality is associated with _ Increased methanol content: 1 The pectinsaf cigar tobaccos havea.consider- ablylower degree of esterifiaalion than cigarette types (4i0--1I.5, Table. 9, against 24;3-30S, . Table 77 or 24.6-32.4, Tableg). The associeted Insoluble galacluronic. ° - - t acid as anhydridb,/.. I total galaclbronie.acid 63,2 70,9 ;.76:4, . 7317 . Soluble galacturonic _ - acid as anhydride, %/ total galacturonic acid. 36;8'. 29.1 23':.6. 2i*.3 - 23.7~ : 17'.2 " ' Pectin methoxyC groups as mctfianol;% y dry- - mattcr ,. 0.621. 0:564 0.540 0,608.. 0.620 0.59 Pectlin methoxyl: groupsl . as%tot'atgafacturonle. acid . !~IDegreeofesteri0catlon ~ lower methoxyl!group~conlent is probably altribul:-~ .. ablcr~0o the intensive fermentation. Preiss (4) alAo~~ . [oundlsmallerquanliticsormethanoliacigar.than. ~.~.in eiga'rette~tobaccos. According to Drsrt„pcctins~ ~ are broken down to~o small fragments~~s in Oriental' . - tobaccos whereas they remainn unattacked in cigar tobaccos. He attributos this too thee greater , degreeof breakdown in the former at the time oP .: . reaping. However, wc werc able toshow a corrcla> -tion of pectin breakdown, to degrceof ripeness" °only' in the bottom third of the Ergo variely cvtling tobacco:.It was~ the more rigorouscuring - and fermcntalion~ procedures appliedto cigar .~ tobacco which produced changesin pectin content largarr than iCaund in cutting~ tobacco. Themcan molecularweight of pcctins isolated fromm someOriental,,CJwtese and other imported - tobaccos was determined asa . Oriental tnbaccoa= Samsun I Nevrokop 1! Chinese Virginia- Kweic6ow A..113'~ ~ SchanlungA..1/3~ . Ciyqar robaccor= . ]!ava f(wrapper and tiinder). . Havana(wrapper) -TABLE 7:-Analysa of Oriental To6accos. - turade Galbcturonicacid as an-' _, hyride % dry matter I1'..38 . 11.35 5'. 12'.22 11.34 11.BSr 1!1.30: 10:21 10.74 11.62 .r XANTHII IZMIR - YAKA Fair Poor I 'III QuaOtyQuality
Page 96: fiw68c00
3,420,241. 18 by tfie.formation of a.precipitatc comprising an insoluble calcium: ormagncsium.salf, and'finally casting the tobaccoo and the inn situu formed pcctins to furm a reconstituted sheetih bhre pectinsserving, as aa binder for the treatedd to- baccoparts in the final sheet. g References Cited. ` UNITEDST1\TPS. PATENTS 1,634,E797A7927Nanji at al. 20 3,012;91512/1961 Howard ------------ 131'-172,76$73411/1956Iiandei -------------- 131=17' 3,121,43321i964Plunkett et ali ------- 13'1I-140~ 3,120,233 2/1964 Batltista.et al..----- 131-143 X MELVIN D. R&.IN,.Primary Examieer. - „ LI.S,. CI., X.R. 131-17
Page 97: fiw68c00
,;. nr:vnevsn. 1963, 2 l:Clitinie ttlkqtallitatII (iLDEg}IAUER ulare Stoffe besitzen eine rflhnze, wic dies auchh bei rktion ciner mcchanisehen en Pektinen noch die Re- rusches im Zellsystem zu. wurde.bereits vor Jahren Pektingeha.lte, sind mehr wohl unter anderem antf nethodikzuriickznfiihren. ,RT [1] iiber eine TBestim- paraten liat \ptlAxr. [2] in n Galakturonsiiuregehalt dbn verschiedeneniSorten ndort, starkeren Sclilvan- sehr bctricht]ic]]y so daB L cn schon oft in der x.•rER [31 stehtder r. Tabakqualitat. Die von clr fiir einiabsehhel3endes ] zahlt die Pektine zu den :n vertrltt W'Y'.TUSCIr [!51 hiB auf Gernch und Ge- c]itet sich die Bcdeutung der Dio]ckulargrol3e und es;Tabaks. Ei• konrnt zu ttern wdhrend der Troek- let. Zigarattentabake der jabck:umtlich,,,vollreif" rnm IS. biA @S..Februnr d..7. en 1Pix~cnenh:dtlicLen~ TafSnk- 19ri3,.2' 'l'nliakprktino-.und'Ir1ci'cn9;influ6nuf die Tnbakyualit'nt 269' geerntct werden, ent.halten dcmnzch vorn Icgcnd mtr niedermolckulhre Pek- tmtc. Tin GcbenSatz hutnu snllcn 7lgarrentabal'<e, vor allmn Um und Deck- blattumtcrial, deren ]7utt.e im voareifen Zustand erfolgt„ nur solehe mit glofSercn Jio]ckultirgevichten anfweisen. Nhclch unscrer Ansicht durften die Z.ig:urentnbake mvscntlichere \'eniindernngen wahrend der Trockrnung und Fermentation erffillren a7s die der. Zigaretten (Orient'-Whgjnia-Sorten); da bei'ersteren die g namlten Prozesse st:irker vor sich geben, Die li'rgenseliaften der Pcktine scrdmn aut3er d7trch die Kettenl'ange der \lolekiile vor allem noclb durch den ; Ictliyl-Veresternrlgsgrad bccinfluflt.. Sollton Zilsanuucnli:inge zwisch.em dorQualit5t r1es.Tabaksund denr.Pelctin. bestchen, so diirften dicse niclit nur im IncngcnmafSigen~ Vorlicgen,, sonderm auch.in der qualithtiven Zusammensetzung,begriindct sein. In der Lirt,cratm~ sind iiber die angeschnittwnen Fragen wie aucli tibcr das Verhalten der ge- nanntien Stoffe in der wachsenden Tabakpfi'anze nur tingeniigende oder selir luckenhafte Angabew ziv finden, so daf3 (las Pektiii-Problem itn T'a.liakk ein- gehender Untersuchungen bedarf, wie dies von P>''xn:r [7] schon zum Aus- druek gebraeht wnrde. f Fragestellung u?ul Losu;zgsweg. Aufl Grund obiger Darlegungen haben wir uns die Aufgabe gestellt, fol- gende Fragen zu untersucliem: 1. Wie verlka]ten sich die Poktine im der wachsenden Pflanze TDazn waren. syst'ematische Untersuchungen fiber das mengenma(jige A'orkommcn der ,Pel:tine sowie iilber ihre qualitative Ziisatnmernsetiung inI unseren inl.lndi- schenTabaksorten erforderlich, wabci die Pflanzenin unterschiedlichcnEnt- nTicklungsstufen gecrntet.und sofort fixiert trurden. 2. Wie verlauft die. qualitative und quantitative ';'criindetung der Pek- tine im Tabak )I-ahrcnd des '1'rocknwlgs_ mid Fermcntationsprozesses 2' hiicrza ]tamen inlSlndische Tabalcezlu• Untersucliung, die na:ch versehiedeneni Z'erfahren getrocknct bzw: fermentiert worden waren.. 3.. Fnwieceit beeinfltissen die Pelitinstoffe die Qua]itkvt des Tabaks ?' Dar- iiber sollt.en Untersucliungem an versehiedenenI handelsqualifizierten Taba-kenn ti nterschiedlicher Qualitat§klasscn AufschlttLi geben. Zur Liisung der gcnannt'cn Aufgabcn bestiminten wir in I herangezoge- nen T'abaken nnd in den aus ihnen isolierten Pektinen den Gehalt an Ge- saint-Ca]'aktlrronsaure, den Detrag der loslic]ten und unl6slichen AnteiIe derselben sowi~e den an esterartig gebintdenen :ITetihoxy1-Gruhpcn. Daraus zrurde das Z'erhdltnis der lI zan- Gesamt-Galakturonsaure und der Verestenungsarad errechnet. Fcrner stelltcn wir Untersuehungen iiber das Vorkommen: von: ICseigsaurc an und siichten naeli.Verfahren, die cincmog- 1
Page 98: fiw68c00
4811 JOURNh16 OFPO!LYMNR SCfENCEVOL..XXIV„ ISSUE NO. 107'(1957) 3. 11, P:,Newhold nnd ht. A. Joslyn, J..Assoe. Opic. Aqr.Cliemis('ey.35„ 872 (',1952),. 4. R,. Rmmnner,. P:.11'. Rmmett,:nnd H. Tnllen,.J. Am.Chem: Sac., 61/„309 (1938). :.. fi...J. Ilai6.mod and S.. llorrobin, Trans. J'araduy Snt., 421) Suppl.,.at (191G):6. 11s Deud, t:. IfuCue.r, and f.. Anyos-Weinx, Jfdb, CAim. Anfa, 33,, 563, (.19.50). I' Ir6:D19nICK. A..I3 FTT Btn F:IM* ' Dclurttment'~of Poud'1''eclhnology I liri vcrsity of. California Dnvis,.Cnlifornia DAV1D.11.. YOLMAN, Dep:rrlmentof Chemtvtryr Univenityof Culiforniu , Davis, CnlSlforniie - Received January 4'„ 1957 • PtcventAdd'ress: Deparnnentof.Chemistry, Universityof Massachusens, Amhent, f(fussarhusetts. The Inflrrence of 1F/ater on the DP of "StaGilized"' Polycaprolactana The equilibria which are set up in systems composed initrtally of caprolac- tam and water have been described by Hermans and his co-workers' and by lj'iloth.' Frottt their work it is easy to derive the relation between the number of polymer mol!eeulesin, the system and the amount of water added initiadlly. The object of this note is to derive and compare the equivalent relations)hip for the system composed of caprolactam, water, and a. mono- aarboxylic acid.serving as a chaio-stopper:. Let the conditions at equilibrium be def'ined by the.following,quantities: (;fI=OJ', [NH2j!„ [C00H],and [CONI'IJ are the concentrations of water molecules„ terminal amino and' carl6oxyl groups, and chainn amide groups, respectively, in gram molecules per gram:, They are related to.one another by. the equilibrilum constanfl Iftfor the reaction 11.N1Ir + R''.C00H ~ li.Nll'.CO.R" + H,Q where:, Er = [CONI$][Hs0] [NH,J[C00Hj P is the number-average degree of polymerization. E is the concentration of polymer and Ea the concentration of monocarboxylic acid, again in gram.molecules per gram. r is the fraction byweight.of the system.which consists of linear polymer molecules. It isassumed that P S> 1 and that r does not vary appreciably within the range of conditions under consideretion.'-' We can them write: A new equilihriurn Kt" • The calculations n r, of the latter Ihnds In stohiliPed polymrr. I Let[11tOle represe the unstabilized syste. i®. (110Jo - E(neglc. and [Ntlr] - (C00l Solving for E.and ch condition when [1I,0] E'. and: dE d[1I,0 Considering now tli carboxylic acid have that the equilibrium c different from that of can consider hydrolysi concentration of free equilibrium: [COOH!.J! = E, Hence: (1) Solving for E and aga E - 2Ki ('14A
Page 99: fiw68c00
124 a. nossavxc REEvE & LEINBACH (51), for example, did not find any relation between the saucing quality of apples and their content of insoluble pectin, and attributed the observed differences in cookability to differences in cell wall structure (52). %EnxEsz, R>townE & Fox (39) stated differences in cellulose eontent between hard cooking and soft cooking apples. In contrast to the opinion of SrMrsoir & HALLIDAY (60), we think that only slight changes in the cellulose fraction eould oceur during cooking. The facilitation of staining cellulose by cooking as reported by Srarasox & HALLIDAY, could be attributed to the degradation of protopectin (58). The difference in cookability of different varieties of potatoes- mealines or sogginess-could not be explained by the beha_viou_ r_ of . the pectic substances or of starch (6, 18, 49). Behaviour of pectin during boiling in low acid (pH 4-7) solutions. The degradation of pectin by heating in low acid or neutral milieu has often been overlooked. When the pH of pectin solution is below 4, degradation due to prolonged hcating or long storage could occur (85, 41). Aceording to XERTESZ (35) both processes are alilcc, though the mechanism is not yet known. Data given in Figure 1 D indicate that this process is accelerated at pH levels above 4, It may be postulated that this effect is caused by the increased concentrations of OH-ions. At lower temperatures in alkaline milieu, pectins are saponified and the esterified polygalacturonic chains decomposed, while during cooking in low acid or neutral milieu the same phenomena were found (Figure 1 D). It was stated by Ar,BEBSxt.;rn; (1) that during heating in this milieu pectates are much more stable than peotine. _ \r•.uxonl & DEUEL (44) mentioned the same difference for the behaviour of pe.etates and d pectins in_ alkaline milieu at lower_ temperatures. The saponification and dopolymerization of pectin during heating in low acid and neutral environment, which was found by DoESSUxc & GREVaBS (15), and the different behaviour of pectin and pectates under the same conditions, found by ALBEBsHEIat (1), are analo- gous to the phenomena in alkaline Inilieu. According to ALBrltsrrLrnl (1), the degradation of pectin chains at elevated tenlperaturesshould be an indication that, in the long run, pectin in thc living plant could be degraded in the same manner, causing a loss in ability to strengthen the cell walls. According to rECTIO 9VH8TANORB AND SIAS[Nr:$9 DUItIYO nEATi`r0 our experiences (13) and those of others (53) this idea-iH=rather im- probable, as pectin solutions atpH 6 ivere stable at room temperature. The slight stability of pectin during heating in low acid or neutral milieu makes this substance unsuitable as stabilizing colloid in products with a similar pH (16). .. , For the determination of pectins in plant materials the extraction should not be done at high temperatures and relatively high pH, (17, 46). Consequently no value can be attached to determinations of the original jellying power or molecular weight of pectins extracted in a similar manner (17, 54). . SIIBfMAIOY AND CONCLIISIONS . - When plant tissues of a parenehymous nature are cooked at pH-values ranging from 3.0 to 6.5, a maximum firmness is retained at pH 4.0-4.5. At lower and higher pH-values a steady decrease of firmness is observed. The decrease in firmness is related to the formation of soluble pectin. During cooking in low acid or neutral milieu the formation of soluble pectin can be explained by the depolymerization of pectic substances or, especially when pectic substances with a low degree of '° esterification are present, by Ca-binding substances from the anioni_c buffer.• Both eil'ects may cause the decrease in firmness of ptant tissues during cook'sng at pH-values ranging from 4.3 to 7.0. The formation of soluble pectin owing to a greater solubility during heating is in most cases of a limited extcnt. It is probable that formation of soluble pectin during cooking in acid environment (pH < 4) is only a secondary effect, caused by the hydrolysis of other cell wall substances, probably hemi-celluloses, IFhich results in a loosening of pectin molecules from cell wall structure. The de-esterification and degradation of pectin chains during . boiling in neutral or low acid milieu (pH > 4) is attributed to the same reaction mechanism as observed in alkaline milieu at lower : temperatures. . Y.IISAqtMENFASSLTNO liez_ieAaenyen zwtiscleen dem Vetlealten von Pektinsubstanzen und dem Hastkoelpen von CaxtenLauexeu,reis,cen. iVenn parenchymatische Pffanv.engewebe bei pH-\Verten von 3,0-6,b gekocht werden, vCrbleibt im Bercich von pH 4,0-4,5
Page 100: fiw68c00
a 254 Coxsrarrs Prnrh[ rind WALTER Tfbr.us.t3rwxrs 19G3, 2 verandert blieb. der Vctresterungsbrad der beiden Troclcnungsarten 1viiltrendl der Fermentation iim Z[Tannramn. Im Gegcnsatz hierzn' ist cin erlteblieher Abbam des Pe7aia-licthylcster-Gcl nltcs danch, die ICaannicrfermentation cingetbcten, wobei' der Verestertimgsgrad von 27,2 auf 17,0 fiil1t, was auf' Demethg•Iicnmgsvotg[iuige zurfiekzufiihrcwv ist. Ein noch st3rkerer Abbauu nach dieser Ifichtuug Ntnu•de bei den isolierten Pektinen der im Stapel fer- mentierten Ifayana-IIc-Tabake festgestellt: Hier ist ein AhLtill des Vereste- rungsg}rades von 37,5 auf 1'3y2 z n vorzeicluren. Vergleicht man die a.us', d'er Gesamt-Galvktiu,onsaure und dem Pektin- methoxylgnrppengellalt des Tabaks. emechneten Verestenungsgt.tide (Tab. 5) mit denen dcr ent'sprechenden isolierten Tabakpektine,, so ist festzusteIlen, daB mitwenigenAasnalcmen diese eindeutighohe' liegon.l'i'ie aber auf Crund dercntsprec]iendenl7ntersuchungen festgestclltAserden konnte, istcineVer- anderung des-mengenmSBigen i4lcthoxylgruppengeha]tes im Tabak w:ilu:end der Tr•ocknung praktisch nieht cingetreten. Die jetzt beobachtete Erscliei- nung, daB nacly der Trocknung des Tabalcs sowohl iiti Hhng als aach in der HeiBhift'anlirge die Veresterrmgsgra.de stuieltmen, kann Vermutli'cly dahin- gehendlerkliirt.werden, da13 Uinllhgerut oen d'er 1lethylgnrppen.in den Pektin- molekiilen vor sich gegangen sind, und za-ar zubiutsten einer ErhSlmng der Veresterung im iso]'ierbaren Pekfinarrtcil'. Unter den Bediiigungen der Aam- mcr- und Stapelfermentation finden da sn D'emethylierungsvorgange statt. Bei dieser Untcrsuchungsreilie priiften Nrir weiterhiu die isolierten Pek- tine aus den BlAtccn der Sorte Ergo; dieverschiedene Troelcnungs- und Per- mentationshehanddungen durcltgentiacht haUen; auf' E'ssigs:iureaehalt. Es gibt n5anlich Pektine aus.verschicdenem Pflanzenniateival, die keine Acctyl- grnppe enthalten, nnd andore, bei denen der Gelialt grof3en Schwankmngen unterlfcet.. In der Litiet atur Ns-ar zu finden, daB GV'AnL [21 sowie Nan ocsov [20] in Tabakpektihnen P.ssibsiinre festgestellt haben. Eiiie Prufung der in dieser Reilie von ims isolicrten H°ektine auf einen etiraigen Geha]t an Aee- tylgruppem fiel ebenfalls positiv aus. Die bei den verscliiedenen Taliakbc- handlungen crzielten ]Ergelinisse an Essigsamre - ausgedriickt in Prozent, bezogen auf den Geltalt an~ Galakturonsiiiuc-Anh}-drid der Pektine - sind naelistchcnd angefhilirt:. _-- Art der Beh,andlung; fiziert lieiBluftgetrocknet hanggetrocknet heiBltrft-redryvig-u'arnrrauin-ferrnentiert liang.-rediy.ing-«-ann rau~n-fenarentiert:. h ang-kamm erfermentiert 7BG3 A Ace- und dryi and, zu.1 Peh gens Essi 0 Prol Ten schi, isoli U \1 des steh fern ters; be1]c ron taba watP und 13'.2 sclii~ Unt ken saan Abm Abh Das: grad tate gen. Verl eino
Page 101: fiw68c00
122 ].DOFSAVRO Hrrrox (26) calculated alculated that for pectin-acid-sugar gels an average of only one in eighty units of galaeturonie acid in the polyga- lacturonie chains would b_e_ needed to take part in the structure of_ of moderately firm gel. In Figure 1 D it is shown that the stronger depolymerization at the higher pH-values may cause a decrease in the amount of pectin. This was also observed when vegetables were cooked (60). Another cause for the formation of soluble pectin during cooking may be an increased solubility of pectic substances at elevated temperatures (18). However, in Figure 1 A it is shown that the formation of soluble pectin by this increased solubility is rather small, because this quantity is at most equal to the minimum quantity of soluble poctin which was found at a pH f 4.8. A marked influence of Ca-binding substances on the firmness of killed, unheated plant tissue is shown in'Figure 1 C, which corres- ponds to the effect on cookability as has been observed by Merrsov (39). This effect will be more pronounced when the substances possess a greater affinity for calcium (O). This effect of Ca•binding substances on the cookability, which is found mainly in low acid and neutral environment, may be of special importance in plant tissues with pectio substances with a rather low degree of esterification. In these cases it is shown (1) that depolymerization of polygalacturonic chains during boiling is much less when pectins with a low degree of esterification are present. A comparison of the corresponding results of addition of Ca_ binding acids to pectin films (rigure 1 B) and to plant tissues (Figure 1 C) makes it probable that the effect of these acids on firmness of plant tissues can be attributed to alterations in the pectic substances. It is clear that the decrease in firmness of pectin films at higher pH-values and the addition of oxalic acid corresponds to greater swelling. Under the same conditions some swelling could also be found in apple tissues (13), but it is improbable that this should be attributed to only pectic substances. Though it may be expected that by cooking in low acid or neutral environment the swelling of pectic substanees is promoted, it must be stated that the effects of cooking on depolymerization and de= ~ esterification of pectin are exerting an adverse effect (24). It is diffi- ~ cnlt to ascertain which of these two effects prevails. l`7 During a period of 48 hours the addition of a Ca-binding substance ~ ~ to a previously killed, unheated plant tissue caused only the so- ~j iubilization of a very small part of the total peetic substances ~ O(Figure 1 C). However, it has been shown (13) that during a greatly prolonged extraction at pH 5 at room temperature, greater quantity i can be solubilized. It may be that at room temperature a long time ~ ~ / .",i~' IT:CTiO SS/D$rANCR9 AND VmDiNRQ4 DLfR7NO nR.ATINO' ' t'_3 " is needed for the final loosening of pectin molecuies from the cell wails; the mechanical difficulties caused by twisting of cell wall constituents may play a part here (47). 1181e of pectic substances in; plant tissues cooked in acid milieu (pH 3-4). When the pH was lower than 4, a relation between the firmness and the amount of soluble pectin was also found (Figure 1 A). According to HENarElx's theory on the structure of protopeetin \fpTm9oN (30) made the conclu5ion that formation of soluble pectin might be caused by lifting of Ca-bridges in the protopectin by H•ions; such an eschangc of Ca ions against kI' ions has really :` been proved, also at room temperature (39). However, neither the results with pectin films (Figtire 1 B) nor with apple tissue (Figure 1 C) show a decrease, in firmness after •. trcatment at pH 3-4. This could be expected in the presence of pectic substances with a low degree of esterification, for in that case the insoluble Ca-pectates should be converted into pectic acid, which is insoluble in water. In the pectin films and apple tissue, however, only pectins with a high degree of esterifieation, which are not made insoluble by Ca-salts, were present (13); It can be seen from Figure 1 D that during cooking in acid milieu, the increase in soluble pectins cannot be ascribed to depolymerization ! of pectin within this pH range. For this reason it may be expected that after cooking, the molecular weight of the soluble pectin is rather high. This is confirmed by the viscous character of such products after cooking. According to the explanation given before, it is rather improbable also that soluble pectin is formed mainly by an increase in solubility at high temperatures. However, it is possible that formation of soluble pectin during cooking in_ acid environment must be attributed to the hydrolysis of other cell wall constituents, particularly hemi-celluloses, which are attached to the pectie substances by covalent or secondary bonds. According to literature (7, 8, 25, 31, 35) hemi-celluloses are much more sensitive to hydrotysis in acid milieu than are pectins. The specific influence of cooking on the structure of cell wall.s is therefore of great importance. Though there is a marked relation between behaviour of pectic substances nnd firmness of plant tissues cooked at different pH-values (Fignure 1 A), the difference in cookability between various varieties of approxinmately the same pH range often cannot be explained on this basis. a
Page 102: fiw68c00
IiI N(4 007 (1957)'. Cef{~^Ctlony it L9. ,rr(` monomer cthyl mcthacry- i is consid'crably dc and Melville. ar the low value with the poly- ire considerably 1 ralucs for their. nomcr in poly~ e datit of Small thyl isobutyrate. i minutes, which ierization of the ator to the, low n.eq" Oxford .Un(Y. ~1s in the nomen- uggestfions: have -icisms are we11 g the nomenclu- imiting viscosity )Iumc'"). - not so.mucb the ensional charac- units employed, try. ature should be ions if the unfits IiITrERBTG TtIE EDITORS r A,A - employed are quoted. For instance, it is unlikely that a result reported " in the form: "The intrinsic viscosity of the,samplh is z deciliters/gram," will be misunderstood, eikherbyother workerain this field, or by outsiders. Indeed, the use of a new nomenclature willl inevitably lead to more eon- fusion4 and such a change. can only be just'ified' when the proposed new tcmis represen't a really marked advance over the old'. ,.:. References (1) Z. nfeniik.:J. Pbl,ymer &d...2o;.58a (19s6). - . ., (2) G. W:ScuU4Bihir„T.Polymo&i.,22.186(1956)+ 12 Hreakmead . - W'e(wyn Ghrden City ~ . .. llertfordshite~.. ~ . Ea8land~ Bteceived' February 1, 1957' A., A. 1f tnxesa T'lae Sorption of Water Vapor by Ctelcitem Pectate Mechanisms of water vapor sorption of polygalacturonfide chains were reported previously,'-' In these cases the formatiom of new hydrogen bonds, by water ispartly the replacement of hydrogen bonds between the ehains themselves; andi swelling producedl a simultaneous increase in crystallinity of'the adsorbing polygalacturoni.des: In calcium pectate the neighboring chains are held together by ionic bonds. Since calcium pec- tate has an important role in the texture of natural plant products and also has a wide range of'application in industry as a gel' orsolidlfilm; the water. vapor sorption of this polymer has both theoretical and practical interest. Calcium pectate was, prepared by the modified Carre-liaynes method' from N. F: pectin 1.1 Its water vapor adsorption isotherm at 29oC. and the equatorial and meridional reflections of the: x-ray dit1'raction during different stages of the adsorption are given in Figure 11. The x.ray photo- graplrs indicated that no increase in. erystallinity occurs during the water vapor sorption, since neither the number of reflections nor their sharpness increase as a function.of relative vapor pressure: Therefore the intrinsic crystallinity is due to the lining up of polygelacturonide chains through calciuns bond's: The:equatorially accentuated spacings of x-rayrellections follow an "S" shaped' curve similar to the adsorption isotherm as was.the case in all other polygalactaonidechains;r indicating that interchain separation occurs as a function of the adsorbed moisture content. However;, the increase in the interchainiseparation is much smaller than in the previous cases. Equa- torial reflections being,thatof the 200 planes; the increase in the interchain separation is onlyg:74 A. (from 11.70-12.44 A.) as compared, for instance,
Page 103: fiw68c00
182' -, ,v soaraa .uD sx.naesx of about 80 6ecs for 50 per cent glycerol solutions. No kinetic corrections were applied. Agreement to within 5 per cent between different determi.. nations of the initial viscosities was obtained. pH values (glaes electrode) of the eolutions were determined at the end of the experiment and the ranges found were: urea pH 2.4-2,76; potae- eium chlortde pH 2.3-2.25 and potaesium thiooyanate pH 2.4-2.45; the pH of the solutions without additivee wae 2:3. 0.4 o.g 1:2 1:6 POTASSIUM THI©CYANAT@ (moles litre) Figure J. Speafle viscosity of pectin (0.10 per cent) in 60 per oent glycerol ai 40.0° in the preeence of potaeeium tMocyanate . ,' Diecnseion . 0 The eeparate effects of urea, potassium chloride and potaseium.thio. ., cyanate are shown in Figured 1-3 respectively, where the specific , viscosity of the pectin at various times is plotted against the molar con. centration of the additive. The specific viecosity was used because it takes into account any so)vent changes and gives a measure ot the effect of the soluto upon the viscosity. Urea (Figure.l) retards aggregation - and, at a concentration of 0.3 molar or more, completely prevents gel formation. On t}iie evidence alone one would conclude that acid pectin _ glycerol gele are hydrogen bonded structures. t OD"!2'7466 PotasaiuaS thiocyanate (Figure 3) and potassium chloride (Figure 2), unlike urea, aaaiai aggregation when present at concentrations up to :. 0.8 molar. This is not unexpected, for the presence of any salt reduces '• the forces of repulsion between thecharged carboxyl groups on pectin molecules, so allowing even the charged regions to approach more closely , to one another. At very much higher concentrations, liowever, both ' salts prevent aggregation, yet the chloride does not reduce, but augments the strength of gelatin gels (Kenehington;1959), and is thua not considered + to be capable of breaking hydrogen bonds. On this evidence it is by no 'meane clear that the thioByanate is disrupting inter-molecular hydrogen bonds in the pectin•glycerol.water system. The authors wish to thank the Departnient of Scientific and Industrial Research for the award of a Post Doctoral Research Fellowship to D. F. H. for the purpose of initiating research into the propertiea of aqueous sole and gels made from natural products. . REFERENCES Aspinall, 6. 0. and Fanehawe, R. S. J. CAem. Soc. 4215 (1981). Courts, A. RecenO Advaaces in Otialin and Gku Reaearch 1968; p. 145. Harvey, H. Q. Sludiee in Jlw Physical Chemietry af Peciine, Thesis, Imndon,1968. Hiret, E, L: and Jonee, J. K. N. Advancee in CarboBydrak CAem. 2, 236 (1946). Kenchington, A.. W. private communication, 1969. Kertesz; Z: I. -TAe PeUia Sube/ancer, New York, 1961. MoReady, R. M,. Swenson, H. A; and Maclay, W. D. Analyr. CAem: 18, 290 (1946). Owens. H. g., Swenson, H. A. and 8chulte, T. H. Nalurai Planl Hydroeolleida 1964, p..14.' pauling, L. The Nature nJ Ha Ch<micai Bond, 1946, p. 297. Vietiooly F. and Breoher, C. Ber. 63, 6207 (1930). :sormoarossor.w.xaa exsraes . "' .. 183
Page 104: fiw68c00
a 17g coscTxr .nn aAasaen , .. y', . ._ . . . . . (.R" . Sterlmg 1959). As part of the continuing investigations of the chemistry ~; and structure of peetic subetanees preliminary obeervations of X-diffrac- tion patteriie in aluminum pectinate preparations were obtained and reported here. . Fibrous and amorphous aluminum pectinate preparations were pre• pared by addition of an excess of aluminum chloride solution adjusted to pH 4.0 with NaOH to pectinic acid solutions adjusted to pH 4.0 and aliove, as was done previously (Joslyn and do Luca,1967). During the ion exchange that occurred, the pH at firet dropped and then increased as aluminum chloride was added. Aluminum chloride solutions varying in OIItAl ratio from less than 1 to 2:7: 1 were also used. As in pre- viously reported data, precipitation of aluminum chloride occurred more rapidly at a ratio of 1.3 : 1. A fibrous curd formed at this composition of hydrated aluminum chloride but not at higher ratios of OH : Al even at the same pH level. The amorphous precipitate obtained at higher OH : Al ratios when X=rayed did not yield we)1-defined bande. The fibrous aluminum pebtinate, however, even when examined wet gave a well- defined X;ray epectrum. The definition of the bands obtained was improved by drying the fibres in air. These results indicated a high degree of crystallinity in fibrous aluminum pectinate and a very low degree in amorphous precipitates. These investigations are being con• tinuod to determine the structure of aluminum pectinate, particularly to determine the linkage between the aluminum cation and the oarboizyl anions of the polygalacturonides. . ' .. ~ REFERENCES .`. . . . . Joslyn, M: A+ and de buvu, (J, J. CaUoid Sci:12, 108 (1957). Kertaaz, Z. L, The Peotie Subetanceer Interecience, New York, 1851. . Palmer, K: J. end Loteken, $. J. Am. Ctiem. Soc. 67,,884, 2122 (1946). ' Roelofeen, P. A. and Kreger, D. R. J. Bxp. Botany $, 332 (1051); 5, 24 (1954). Shimszu, F. and Steding, C. J: Food Scienee 26, 291 (1981). Sterling, C. Biockem. Biophys. Acta 26, 186 (1957). Tresdwell, W. D. and Zuroher,. M. Helv, Chi>n. Arta 35, 980 (1032)~. .~~~.. 2 7 00727464 Aggregation in Pectin-Glycerol-Water Systems D.1". Nar)ar and G. Stainsby SUMMARY • The work described ekows the effeat of Aydropen bond breakers upon pectin in giyeeroi-wakr soiutian. After oonridering analogous work in tbe field of pretein chemistry, three materiads were used as being typicul examples of a non-ionio hydrogan bond breaker (urea ai pH 2.J), an ionic hydrogen bond brreker (potassium thfocyarate) and an inert Ia11 (po0aeeiu+n cGloride). The effect of thaee tkree wtnpounde on !he aggregation nf pectin in, glycerol-teater eolutione uae studied viecometricaliy at 20°, after heating . at 9S° for 6 minutes. Urea prevented aggregation above a concentration of 0.3 molar. Potneaium tAiocyanate and potassium chloride both ac- : ~ centuatcd the rate of aggregation o/ Eoncentra7ions up to about 0.8 motar but prcvanted iJ above 1.6 mo(ar. The results for both urea and potassium oh{oride v/ere w/w/ was eapeciedfrom their known reactivity teurirds .. hydrogen bonded systems. Potassium tkiocyanate was anomaiow 7n . ao far as is had a preofer effect in inereaying agpregation tban potassium .: oktoride- "Acxa rEcTlrv-sucwn gele are of some coneiderable industrial importance, „and have been studied exteneively (see Kertesz, 1951, and Harvey, 1956, ~ for reviews) but as yet the precise nature of the mechanism of gelation ie far from perfectly understood. It is generally presumed (Owen, Swenson and Schultz, 1954) that this type of gel is held together mainly by hydrogen bonds, linking oxygen atoms on different pectin molecules. Random linking of pectin molecules in this way would lead to the pro• duction of a three-dimensional network, or gel. The necessity of main- tainiiig the acidity of the gel in the neighbourhood of pH 2.5 is under- atandable, from this view of the gel structure, since in this range of acidity only a small proportion of the free carboxyl groups in the pectin molecule will be charged, thus allowing regions of the molecules to approach sufficiently oloeely together for hydrogen bonding to take place. It is also necessary that there should be very few bulky eide chain groupings on the pebtin molecule, in view of its relatively inflexible chain structure (as shown by model-making): Although evidence has been presented (Hiret and Jones, 1946) to show that various types of side chains may be found, neverthelees it ie probable that only a emall fraotion of the mole= e - '~ NuuLoC~s fROGGk/J/NCS, , e.C ~1 ~/QO ~ SC) eNGY+ 'P~ T~+Z`N. fs'h NpTtiNAL. C6WB t~trf1 1SfJ~l~l]) (OaY.l94+-.e.:'-
Page 105: fiw68c00
188 r.DOrsnvno eine maximale Hiirte. Bei niedrigeren und hohere.i pH-Werten wird eine allm3hliche Verminclerung des Hartkochens beobachtet. Diese iese Verminderung steht im Zusammenhang mit der Bildung von Ios- liqhem Pektin. \Viihrend des Kochens in einem schwaeh-sauren odcr neutralen'.1lilieu kann die Bildung von loslichem Pektin durch eine Depolymerisierung der Pektinsubstanzen erfolgen oder - be- sondecs wenn Pektinsubstanzen mit einem geringeren Veresterun_gs- grad vorhanden sind - dureh Substanzen des Anionen-Puffers, die Ca binden. Beide Vorgiinge diirften das Absinken des Flartkochen von Pflanzengewebe w.thrend des Kochprozesses pro_ze_sses bei pH-vVerten zwisehen 4,5 und 7,0 bedingen. Die Bildung von loslichellt Pektin - auf Grund einer €rhohten L'oslichkeit durch den Erhitzungsvorgang - hat in den meisten Fallen eine geringere Bedeuttm_g. Es ist wahrscllcinlich, daB die Bildung von loslichem Pektin wahrend des 3:ochens im sauren Bereieh (pH E 4) nur eine sektm- d'are 1Firktmg besitzt, Sie wird verursacht durch Hydrolyse anderer Zellwandsubstanzen, wahrscheinlich von Hemizellulosen. Dies be- dingt eine Lockermig der Pektinmolekule aus dem Zellwandverband. Die Entesterung und der Abbau von Pektinketten wahrend des Kochens in neutralem oder sehwach-saurem Milieu (pH > 4) ist auf denselben 13eaktionsmechanismus zuriiekzufiih_ren__, wie im alkali- schen llilieu bei niech•iger Temperatur. IZESUMLr• Lorsqu' un tissu vEgdtal de nature parenchymateuse est cuit b des pH s'uehelonnant de 3,0 a 0,5, un maximum de resistanee nucanique appnrait s& dcs pH de 4 a 4,5. Pour des valeurs de pH plus faibles ou plus dlevees, on observe une ddcroissance rdguliere de Ia rigidit& Cette diminution de rigidit6 eat li6e_ a la formation do pectinessolubles. Durant la cuisson en milieu faiblement acide on en milieu neutre, la formation de pectines solubles peut s'exp]iquer par la d€polynae- risation des substances pectiques ou, specialement clans le cns ou des substances poctiques a faible taux d'est6ri8cation sont prdsentes, par 1'effet des substances capables de fixer du calcium A partir du tampon anionique. Les deux effete peuvent causer la diminution de rigidite des tissus veg6taux durant la cuisson fl.t des pH variant de 4,5 n.7,0, La formation de pectines solubles, par l'augmentation de solubilit8 durant la cuisson est dans la plupart des cas un ph€nomene limite. 11 est probable que la formation de pectines solubles lors do la r I PECTIC sUnSTANCRS AND FIRMNE99 DURING HEATINa 127 cuisson en milieu acide (pH < 4) est seulement pn effet secondnire, cause par 1'hydrolyse d'autres substances appartenant :l Ia paroi cellulaire, probablement des h€mieelluloses, co qui dutermine uric lib_ eration des ntolEcules de pectines L partir do la paroi cellulaire. La saponification et Ia ddoradation des chaines Pectiqucs au cours de la cuisson en milieu neutre ou faiblenunt acide (pH > 4) doit a'attribuer au meme mdcanisme de rEaction que celui observ6 en milieu alcalin iL basse temperature. ACRNOWL:aDGF.31RYT The auihor is greatly indebted to Dr. B. S. LIIa for the correction of the English text. BEFERENCES Biochern_. 1. ALRnnsnElM, P., 1959. Instability of pectin in neutral solution.a. 33ioT6.ys. Res. Commn., 1, 2,53. 2. ANDEasov, D. B., 1935. The structure of the cell walls of the higher plnnts, 13o0. Itev., 1, 52. - 3. ANYAS-1\'Elsz, L., L. SoLMS a H. DEUEL, 19,51. Bestimmung und Chnrak- terisierung von L'elctinenmit Hilfe von lonennuct.•wsehern, 4lfitt. Geb. Lebenena. Clnfers. u. Hyg., 42, 91. 4. B.I•rE-SxIZH, E. C., 19.58. The contribution of phenolie substances to - quallty in plant producta, Qua(. Plant. Hatei•. Veg., 3/4, 440. 5. BEAvi;N, G. H., L. L. Hlnsir & J. K. -N. JoNES, 1939. Pectic substanceq, part IV Citrus araban J. c/Ienl boc 1939 II, 1565, 6 Br•.Txt:LH2IM i'. A. & G STIartlvc 1955. Factors associated with potato toxturo. II Peetic substances, lh ood Res., 20 113. 7. BAICn, W. P.. & 0. lG. IVILsos, 1941. Citrus pectates, properties, manufacture and uses, Indusir. L;ngng. Chem, 33, 2$- 8. $omc, H., Theory and practice of pectin production, Board of Trade, German Division (Documents Unit), London. 9. DEUEL, H., lt. I'1UT9('IINEICER, E. STUTZ & J. 0. I"'RBDEItiK9, 1937. Anionenwirlcung nuf Ca -1'a-Gloichgewichte an Ketionenaustnuschern, Xelv. chim. Acta, 40, 2000. 10, DLUEL, H., E3. HvnRn & L. ANYAS-WICxsz, 1950. IIeber „Salzbriickcn" zwischen ilalcromolol<eln von PolVelelctrolyten, besondcrs bei C'nl- ciumpectinaten. Helu. chim. Acta, 3J, 663. 11. DoEsnano, J. 3., 1950. .Determination of jellying power of pectins in high sugar gels_ (Transl, title). Voulin0, 11, 138. ' 13. DorsnIISo,-7. J., 1900. IIiirtemesser fiir Prbsenkdrneq Ind. Obst. u, Cem. Verwert., nr. 3, 51. I9. DoNsnuno, J. J., 1957. Relation between the solubilization of pectin and the fate of organic acids during mltturation o_f_ apples, J. Scci. Food and Agric., 9, 206.µ. DoxsEVna, J, J. & G. GRaesRS, 1952. )iensurenrent of firmness of fresh - and processed horticultural produce (Traasl. title), Conxerva 1, 150.
Page 106: fiw68c00
IN ALEMORLAT.f W, NBCNT Wien, Digitalis und elaviceps pu•rpwsea, das Mutterkorn. Hier ziich- tete er ertragreiche Rassen mit hohem Gehalt an Alkaloiden, so dass er verschieelentiich naeH Deutschland und auch nach Spanien zur Anlage von Groaskulturen lturen berufen wurdc. Schliesslich setzte sich Dr. HacxT fur die ;\ormierung europA.iseher Drogen und die ' SchatFung der Verbandsmarke fur tlsterreichisehe (ZualitUserzeug- nisse ein. Das Sehriftenverzeichnis von Dr. HECHT umfasat 59 Nummern, I wozu noch zahlreiche Rezensionen in verschiedenen Zeitschriften kommen. j Mit Dr. HECHT ist ein vielseitiger Pbrscher und Praktiker dahin- gegangen. Gerade die Vereinigung zwischen Praxis und wissen- schaftlichem Idealismns (neben einer grossen Organisationsgabe) zeichneten HECHT aus. Unterzeiehneter hatte ihm die Redaktion der Abteilung „Arzneidrogen", die Dr. HECHT mit internatlonalo: I3e- ' teilung durehfuhren sollte, an der 5. Auflage des vom E3nterzeich- neten redigierten Werkes von WIESNEx, „Die Rohstoffe des Pftan- zenreiches" ') ubertragen. Es wird nichtleichtsein,einen passenden ; Ersatz zu finden. Im personlichen Verkehr war Dr.,HECHT ausserst iiebenswrirdig und hilfsbereit, anregend im Gespriich, mit weitem Horizont, fur. wissensehaftiiche Probleme interessiert.. NYissensehaft und Praxi.c hatten noch viel von ihm erwarten kSnnen. Es ist erstaunlieh, dasa Dr. HECHT trotz seines korperliohen Gebreehens - er war fast vollstandig taub - so viel leisten konnte, denn neben seinenwissen- schaftlichen Arbeiten hatte er die Arzneipflanzenkulturen bei zahl- reichen Anbauern in der Weststeiermark zu leiten, das Trocknen der Pflanzen in einer besonderen Trockenanlage zu uberwaehen und schliesslieh die fertigen Drogen an die Abnehmer zu leiten. Unter- zeichneter hat i_n_ Dr. HECHT einen schwer ersetzbaren Mitarbeiter verloren. 95~4Z4,00 RELATION BETWEEN THE BEHAVIOUR OF PECTIC ECTIC SUBSTANCES AND CHA\TGES IN FIRMNESS OF HORTICULTURAL - PRODUCTS DURING HEATING (Institute for Research on Storage and Processing of Horticultural ) (with 4 figs.) INTROD[1CTION The ° chaiige's"iri flrmness`ef "rla.nt~tissues during heating- are partly>caused by alterations in the structure of the- cell walls. , Because this structure is.only partlv known, it is rather difficult to give an explanation of.these proeesses which take place during- Imatnrg. In many cases (6, 18, 38, 39, 40, 49, 51, 60) an explanation ofthe observed phenomena has been based upon analyses of the lx-etie- substances, whioh;;are ~considered to be..the cementing ' materials between the cells (20, p. 60). Most pectin preparations contain a rather large amount of hemi- celtuloses from the cell wn!1(3, 5, 25, 27, 28, 29, 32, 33, 35, 45, 48, 50, .i5, 56) which are difficult to separate from pectin by ordinarv physieo-chemical methods (50). For this reason, it has often been ,csumed that these substances are bound to pectin by covalent txmds (35, 36). Later it became clear that these substances form no part of the pectin molecule (50, 33) or only a small part of it; in the !siter case these non-uronide substances may be bound i_n_ the Lilygalacturonic chains (32,48) as well as in side-chains (25). In addition to the fact that the insoluble protopectin is mieed . with hemi-celullose, we have to take into account that very soon after cell division, cellulose and protopectin are_ deposited during formation of the primary wall (19, 20). The presence of cellulose is:masked by protopectin (2, 20, 43, 61) .nit often cannot be detected by chemical micro-assays. In electron wi.•roscopy the cellulose structure of the primary wall becomes - %i.: ible only after removal of the protopectin by the use of pectolv3io , .uz' %anca (01). For this reason, we must take into account the fact tltat the cellulose micella are separ8ted by hydrophilic colloidal tuaterial, which consists largely of protopeetin (2, 34). I Q op L fTqS P~AN TARYM GT MATER /l1~{ Produce, Wageningen, the Netherlands)
Page 107: fiw68c00
2,700,734 7 7. Tobacco sheet material' comprising finelydivided tobacco,.at least aportion of which is entirely dry~ ground, randomly dispersedi non-tobaccofibers, within a matrix of cellulose glycolic acid. 8. Tobaceostieet material comprising finely divided tobacco, at least aportion of which is entirely dtgground which will pass througha 20mesh screen. and paper pulp fiber within a.matrix ofeelluloseglycolic acid: 9. Tobaccoo sheet materiall comprising finely divided tobaccoo within a, matrix of glyoxall andd hydroxyethyl celluloae.10. Tobacco sheet materiall comprising.finely divided tobaccoimbeddedi in an initially water insoluble algin compound. Ll. Tobaccoo sheet materiall comprising fihelydivided tobacco imbedded in calcium alqinate: 12. Tobaccoo sheet material' tomprising finely divided tobacco imbedded in an initially water insoluble pectin derivative. 13. Tobacco, sheet material comprising finely divided tobacco' whichh will' pass through 200 mesh screen and cellulo,o.fiber, within amatrix of glyoxal.and hydroxy- ethyl ccllulose. 14. Tobacco sheet materiall comprising finely divided tobacco and randomly dispersed fibers, imbedded in an initiall ywater insotubl e algi noompou nd. 15. Tobaccosheet material comprising frnelydivided tobaccoo and randomly dispersed fibers, imbeddedd inan initially water insolubl e.pectie.acid Icompou nd. 16. Tobaccosheet material comprising finely divided tobaccoaad randomly dispersedc fibers;..imbeddedl im an initially water ihsoluble 7rolyuroaide.. 1'76 7lobacco sheet material comprisiog finely divided tobaccoand randomly dispersed fibers,imbedded iacalci- umalginate. 18. Tobacco. sheet material' comprising finely divided tobacco in association with propylenc glycollalginate:. 19: The method of forming tobacco sheet material which comprises forming,io a liquid a suspensiomof finely divided tobacco, at least a portion ofl whichish entirely dry ground„ and an initially water insoluble polysac charide adhesive, applying said suspension too a.formivg surface, drying said suspension to form tobaccoo sheet material and removingg said tobacco sheet materiaf from said i forming surface. 20: The method; offormiug tobacco sheet material which comprises formingin aliquid a viscoussuspensioa of finely divided tobacco, att least a portion of whichh is 8 21. The method of formingg tobacco sheet' material'' whichcompriscsforming in a liquid a viscous suspensionn of finely divided' tobacco, ar least w portion of'f whichh tss entirely dry ground, and aminitially water insoluble poly- 5 saccharide adhesive, extruding said suspension to form tobaccoo sheermaterial and drying saidd sheet material. 22. The method off formingg tobacco sheert material'' which compriscsforming ima liquid a.suspensiooi of fincly divided tobacco, atleast a portion of whichds entirely dry ]0 ground„ randomlydispersed non-tobaecu fibenandl an initially water insoluble polysaccharide,, applying said suspension to a forming surface, drying said suspension to form tobacco sheet material and removing said tobac- co sheet..matcrial from.said forming surface: hr23. The method of formingg tobacco sheet; material~ , which comprises forming in a liquid a.suspension of finelydivided'y tobacco, at least aa portion of which isentiiely drygroundl.rand'omly dispersed non-tobacco fibersan& cellulose glyeolicc acid; apply'ng: said suspension to a '-Oformingg surface„ drying, said suspension toformtobaccoo sheet materiali and removing saidd tobaccoo sheert material from said forming surface.. 24. The method of formingg tobacco sheet material which comprises adding to an aqueous.suspension of ecllu- 25' losee glycolic acid.and paper pulp fiber a quantiryof finely divided tobaceo, at least a portion of which is entirely dryground,.which wilCpass through 20 mesh screen,.dis- posiug said suspension uponi an impermeable.forming sur- face, drying said.suspensionito form tobacco sheet mate- 30 rial and removing said tobacco sheet.material from said . forming surface. 35 40 45 Refernncea.Cided in the file ofthis,patent. UNITED STATES PATENTS 888,743 Rogers________________ May 26, 1,908 2,433,877 Wells et~.al. -------------- )aa 6, 1948 2;592,553 Frankenburg.------------ Apr. 15, 1952 2,592,554 Frankenburg~,__-____-___ Apr...15, 1952 2,598,680 Frankenburg.----------- .Iune 3, 1952 2;613,673 Sartoretto et, al. --------- Oct. 14, 1952 2;708,175 Samfield et at..---------- May 10, 1955 2;734,509 Jurgensen -------------- Feb..14,1956 2,734,510 Hungerford et al.. ------- Feb. 14, 1956 2,734,513 Hungerford ei al--------- Feb. 14, 1956 2,747,583 Frankenburg~ et all ------ May 29, 1956 FOREIGN PATENTSS entiielydry ground, and an initially water insoluble poly- C:.L. Mantell: "Water. Soluble Gums," published 1947 saocharide adhesive,, calendering said suspension.tb form 60 by Reinhold Publishing Corporation, New York, N.. Y., a tobaccoshoet and:.dryiog said tobacco sheet.. pages 124'4 and 125..
Page 108: fiw68c00
.a:m[sTS [Vod.. 30, No: ,2 ideic Acid, 77-85 (Cambriilj;a 15). 1, 83 (1945).b,.. Corp., New Yurk(1951), iaap, 12;, 70 (1935). 1938).;1928)t .'m:.4, 20 (1937); C.. A. 32, 820 1~`+ AIN' GRADES TOBACCO ,E CHARACTERIS1i'ICS" F ard§ and Technical n and Marketing ~ ure, Washington on and'-gmding of Ameri- Department of Agricul- .r types, namely, 11, 12, +es.is divided into groupsC(Cutters), II (Smokingg script),, and. each of the are indicated by Arabic color. In brief, for flae- tdsnormally upon. t9n•ce ation,., and (3)) color. In designate some unusual ch attributes of the leaf s.or freedom from physi- ~ charactcristicsofs tillose Itbdvudamude:avaWbk uder li. 19,531' PHILLIPS & BACOT: COMPOSITIONOF FLUE-CURED TOBACCO 505 leaves normally produced along the median region ofl the stalk,, of'second quality and' having a lemon-yellow or the lightest color of the type, and );.li' is the grade designation of tobacco having the general appearance and other physical properties of the leaves usuallyproduced oathe lower portion of the stalk, of fourth quality, and of an orange or the medium color of the type. Old Belt; or Type 11, tobacco.is one of the four types, of flue-cured tobacco produced in.the United'.Staties. It isused largely for the.manu- fLcturo of cigarettes; and' is produced.in the Piedmont. regjon of Virginia and Nbrth Carolina. The purpose of'the present paper is to directatten- Uion to the differences in chemical composition of certain grades of' Type 11' flue-cured tobacco, and' to point out possiblerelationshipse between chemical composition and the severall properties and quality charaeteris- ties of the leaf within each grade. REVIEW OF LITERAT iURE There is at present an extensive literature on the chemical composition of cigarette tobacco„ but this.is devoted largely to Russian~ and' Turkish typesand includes the Greek, Romanian„ and Bulgarian (5, 19, 39, 41), Although from.the standpoints of quantity produced andidollar value, flue-cured tobaceo,is our most important tobacco cropy our knowledge of thc chemical composition of the various types of'this class.of tobacco is rather limited.Among the early investigators of the chemical composition of Americam flue-cured tobacco maybe mentioned Moore (24) and' Car- pcnter(6). Moore reported on the ehemicaLeomposition.(as determined by conventional methods) of "bright wrapper" tobacco produced in Granville County, N.,C: (presumably corresponding to,what isnow designated as Tyspe, 11 flue-euredd tobacco). Carpenter analyzed yellow tobacco from Granville County, N. Cl, which had been cured by two: different methods and'sorted'into scrap, trash1ug, best lug,sand'lug,,bestlug (cutters), first and second grade wrappers, bright tips, and black tips.. No attempt was tnnde to correlate the chemical findings of the various grades of tobaceo under investigation. Garner, Bacon, and Bo eling (14) reported on the:chemical composition. of two domestic cigarette tobaccos, namely, flue-curedi (grown in Gran- ville County, N. C.,-presumably Type 11)' and Maryland (Type 32),, as'.welL as: two cigarr types of tobacco, Pennsylvania cigar filler (T<"ype41„ nnd, Connecticut Broadleaf (Type 51). Inasmuch as these investigators Ircrc interestedd priinarily in.pointing.n out the differences in chemical.com- position existing bethl•cen cigarette and cigar tobaccos as such„ as well as betweeu,the types of these two cl'asses of tobacco, no attempt ti•as made to, determine the ehalactoristicdifferences between the.various grades of the t?'lms of tobaccos examined. Dark-is, Dixon, andGross (9) d'etermined'some of,thegroups of organic.
Page 109: fiw68c00
J, Dc89SDae mined by measuring the force to penetrate them with the metal pin of the hardnessmeter (13, 14). The increase in weight was also_ determined. The data obtained are given in Figure 1 B. Firmness and amount of soluble pectin in killed, unheated apple tissue at various pH's. 300 g lots of diced unripe apples were exposed to the vapour of boiling ether for 30 minutes and, in the same manner as previously described, dipped in 300 ml of 0.2 % acetic caid or 0.2% acetic acid and 0.2% oxalic acid buffers at pil-values ranging from 3.0 to 6,5 for 48 hours. During this period the pH of the solutions wa__s m_ ai_n__- tained constant by the addition of HC1 or NH4 OH. The firmness of the cubes from the various solu tions was measured by use of the hardnessmeter, while the pH and the quantity of soluble pectin of these cubes was determined as described before. The amount of soluble pectin of the dices after different treatments was calculated as a percentage of the total amount of pectic sub- stances. This total amount of peetie substances in diced apple tissue after ether treatment was determined after disintegration of a lot of dices in a Waring blender and extraction by boiling at pH 2.6 for half an hour. The results of these measurements are given in Figure 10. v Lhanges in dissolved pectin duri boiling at v a r r o u s pti' s. 6s,v4Z400 A solution, containing 1.15% pectin (degree of esterification 75 %) and 0.37 % lactic acid, citric acid and phosphoric acid, was divided into 10 aliquots.. ~ The pH of these aliquots was adjusted with 20% NHe solution to pH-values ranging from 3.0 to 7.5. After boiling the aliquots of solution for 15 minutes, the solutions were rapidly cooled, the contents and degree of esterification of the pectin were determined by a titrimetrical method (13). The jellying power was determined also (11), and calculated as commercial grades. The jellying power of the pectin is influenced only to a small extent by the changes in the degree of esterification during boiling (11, 15). The decrease in jellying power during boiling at the rela- tively high pH-values must be attributed to a shortening of the chain of pectin molecules which is shown also by the decrease in pectin content at a pH higher than f 5.8. L'EQlle 9IIU8TANeP.9 AND BIRMMNe9 DVRI`/6lIL"AT1`fO -1at 'After boiling; a decrease"in pH was forurd,in the solutious.of higher pH-values. This decrease in pH should be attributed to the formation of carboxyl groups by de-esterifieation of the methoxvl.;.. groups. The data obtained are shown in Figure 1 D; the decreasein pH tluring boiling is indicated by arrows. F PlanttissuescookedatpH4.0--4:8wetefirmerintexture(Fig,1A)t t Boiling at higher or lower pH=values caused a decrease in firmness which correlated well with the increase in soluble pectin contents. The fact that the same phenomenon was found in potatoee, beets, turnips, apples and cauliflower shows the'existence of an idcntical structure of cell walls in the mainly parenchymous tissues from various organs of edible crops. ' iZelation between peetic substances and ' firmness of plant tissues cooked in low acid milieu (pH4-7). It may be important to investigate the relation of the changea in fi_rmness and the behaviour of pectic substances during aoot€ing, Generally spealcing, a decr~ase of firmness corresponds wjth the increase in soluble pectin cont;ent. In Figure 1 A it is shown that at H-values just over p114 .3 qlecrease in firmness was accoml>anie<l ~ p by a decrease in soluble peo ip content. From the rneasurenttfxts,of I jcllying power, expressed a~tiommercill grade vnlues (F1gu,ttii T I)), it is clear that boiling of pectin at pH-values above 4 causes a severe E depolymerization of the pectin molecule (15). Therefore it is probable ' that during cooking at pH-values just above 4 the gelstructure of protopectin is weakened somewhat by a beginning depolymenzatlon_, which was not strong enough to cause solubilization of pectin. With a further increase in pH, a stronger depolymeri?ation may' cause the formation of increasing amounts of soluble pectin. This relation between depolymerization and formation of soluble pectins lant tissues has also been shown by the depolymerizing action in p , ; of pectolytic enzymes (21), y-rays (42) or by a similar influence o€ a 36 ?1 d H 0 ). , z 2 ( ! milieu of ascorbic acid an in the high pH range pectin may be formed as a result of a greater solubility, due to the decretvae in molecular weight and to the breaking of polygalacturonic chaina between the places at which these chains are bound in the gelstructure of protopectin. Very is known about these bonds. l lit t e I
Page 110: fiw68c00
~~,-------_~ 520 ' ASSOCIATION OF OFFICIALAGRICUI:TIIRAb CHEMISTS [VoG. 66;. No. 2 negative value and lower the quality of'.tobacco. IIe has proposed aaather involved formula for calculatiiiig tehatt he calls the "Quality Number" ("Qztalitdl9zalil")' (5, p. 298). This'is obtained by dividing the sum of the percentages of sugars, starch,.oxalie acid, tannins, and resins;by the sum of the pII valile and the percentagcs of pectic substances, pentosans, cellu- lose, lignin, ash, citric acid, total nitrogen, protein nitrogen, and nicotine, and multiplying the resuht by 400. Pyriki (33) has proposed a simpler method for calculating the "Quality Number" of Turkish and related types of cigarette tobaccos. Pyriki's "Quality Number" is obtained by dividing the sum of the percentages of total reducing substances and of resins and waxes, by the sum of the per- centages of nicotine, totall nitrogen (less nicotine nitrogen), and total ash, andimultiplying the result by 400. As in. the case of the Shmuk.Coefficient, the quality of the tobacco is said to varydireetlywith the numerical value of the "Quality Number,''"that is„the.greater this number the better the quality of the tobacco. In view of the fact that resullts of the present study indicate that the quality of the tobacco grades within each group varied directly with the percentage of reducing sugars (or tota.l l sngars)' and inversely with the percentages of oxalic and; citric acids, we have calculated: the ratios . Per cent reditcingg sugars (as glucose) Per ceut oxalie acid ~- per cent citricc acid of all the tobacco: grades analyzed. The numerical value of this ploposedi ratio n-ould be expected to vary directly with the quality of the tobacco, that is, the grcater the number, the better the quality of the tobacco with- in each groult.The ratios of.reducing sugars and organic acids are shown in Table 2, shich also includes the Shmuk, Ifovvalenko,,and.Polyphenol Co- effieients, and! the Pyriki Quality Numbers: The ratios of reducing.sugarsg to oxalic plus citric acids were eomputedl from data caleulated on moisture- free and sand-free bases, while the other "Coefficients"' or "Numbers," in conformity with the procedures of Shmuk, Kovalenko, and Pyriki, nere computed from the requisite data in Table P, recalculated on a mois- ture-free basis. In Table 2; the L colored grades.lxere treated as a separate and distinct' block from the R colbredl grades. The chemical composition of the R coloredl tobaccos is so definitely distinct from the L colored tobacco that it seemed best to treat.itseparately. For this reason, the three R colored grades tvere set off in a separate block.. In examining, Table 2, ft must be remembered that the quality of to- bacco is supposed to varyrinversely with the Polyphcnol Coefhciont„that is, the lower the:numerical value of the coefficient, the better the quality of the tobacco, while the reverse is supposed t'o, be true with respect to all the otheacoefhcients, numbers, and ratios listed,in the table. 196$]I PIIILLIPS TAELE 2.-Shmuk, , and ratio. u. s. aRApR' WRR[' cusencnR.e.c (1) B3L 4.2 B5L 3.8' H3L 4.6' H5L 4.0. C3L 4.2 C8L 2,5' X3L 2.2 1 X5L 0.9: P5L 0.5. B3R 2.01 B5GB' 1.6 H5R 1.3 (1). % Totd Red'oei (2). %Raducing6u, (3)%To1aI Reduei % Total T (4)'. % Redueiog.8py % Tatwl Nitms (S)%Reiudaa.8ur % Polypkn % Total Redud (7)~. %TablRedlwv %N (8)%Reducn[8u % ox,c. * ehmuk..KovdlnYo Jnlae( Teble 1, txcRllulu bam applicable dat. mmp I ...................
Page 111: fiw68c00
128 J. DOPSmntO 15. DOESBURG, J. J. & G. Gnnvcxs, 1960. Setting times and setting tem.. peratures of pectin jollies, Food Res. 25, 634. 16. DoESaqne, J. J. & L, DE Vos, 1959. Pasteurized mixtures of fruit juices and milk, with a long shelf life, V. Int. Fruit Juice Congr., 2nd Report, p, 32, Vienna, Jane 1969. 17. ELwELL, W. E. & W. 1f. DEnN, 1939. Pectin content of plant materials, Plant Physiol., 14, 80.9. 18. FREEMAN M. E. &`lr. S. RPCCRIR, 1940. Pectins and the texture of cooked potatoes, Food Res., 5, 167. 19. FREY-1VrSSLIxG, A., 19:36. Der Aufbau der pftanzlichon Zeliwiinde, Proto7ilasrna, 25, 261. 20. FREY-WYSSLiRO, A., 1053. Submicroscopic morphology of protoplasm, 2nd Edition, Elsevier Publishing Co., Amsterdam. 21. GRIrrIN, J. H. & Z. I. KER•rrsz, 1946. Changes which occur in apple tissue upon treatment with various agents and their relation to the natural mechanism of softening during maturation, Bot. Gaz., 108, 279. 22, Hx;>cLEIa,R.A., 1.943.UeborProtopoktinundProtocellulosc,.llakromol. Chem.,1,121. • 23. HENGVEIN, F. A.. H. KRdssla & A. STEINMIG, 1049. Der Phosphoreaure- Gehnlt von Pektinen, allokromol. Ckem., 4, 78. - 24. HBNCLEiN P A. & I. I{ROax, 1949. Die Quellung von Pektinen und peL-tinhaltegen Stoffon, Makromol. Chem., 4, 308. 25. HILLS, C. H. & R. SPEISER, 1946. Characterisation of pectin, Science 103, 166. 26 HisxON, C L„ 1951, The polyuronides, Ann. Rev. Biocl;em., 20, 07. 27. HIN•raN, C. L.,. 1939. Fruit pectins, their chemical behaviour and jellying properties, Dept. Scientific and Industrial Research, Spec, Rep, nr, 43, 28. HIRST, E. L. & J. K. N. JONES, 1938. Pectic substances, Part I, The araban and pectic acid of the pea-nut, J. chem. Soe., 1938-I, 496. 29. HInsT, E. L. & J.. K. N, JONES, 1939. Pgctic substances, Part. II. Isolation of an arahan from the carbohydrate constituents of the pea-nut, J. chem. Soc., 1939-I, 452. • 30. IsnERwooD, F. A., 1955. Texture in fruit and vegetables, Food_ M_ anu/„ 30, 399. 31. Jaxovrav, G„ 1949. Pectines, acides pectiniques et leurs gels, Ind. ayric• etaliment, 66, 47. 32. JANSEN, E. b., L, R. :liwc DoxNEL. & W. H. WAxD, 1949. The minimum size for the structural unit of pectin, Arclt. Biochem., 21, 149. 33. JONES, J. K. N., 1951. The chemical composition and properties of pectins, Chem. and Ired., 1951, 430. 34. IcLnR, T., 1951. Growth and structure of the primary wall, in „Plant Growth Substances", edited by F. Saooo, Univ. of Wisconsin Press. 35. IiEaTEsz, Z. L, 1951. '1'he Pnctic Substances, Interseience Publishers, New York - London. 36. IIERTESZ, Z. L, 1943. A possible non.enzymatic mechanism of changes occurring in the pectic substances and other polysaccharidea in living plants, Plant Pl+ysioE., 16, 308. 37. IOsnTiisz, 7. L, nI. 1;vc..nE & G. Fox, 1959. A study of apple cellulo_se, Food Res. 24, 14. - 3;3. LOCONTI, ,1. D, & Z, I. KERTESZ, 1941. Identification of calcium pectate oa the tissue firming compound formed by treatment of tomatoes with calcium chloride, Food Bes., 6, 449, 39. 1L.zmsuN, S., 1946. The cookability of yellow peas, Aeta agrio. Sueo., 2, 188. PECTIC flVnsTANCls AND PrRMNR%9 DURLNG ]1RATINC 129 46. IYIAT'rSON, S., E. ARF.RBl;nO E. ERIR.4ON, P. ICOI7TLER-AVDERSOV & - K. VAaTRAS, 1951. Factors determining the composition and cookablity of peas, Acra a0rcc Scand., 1, 40. 41. M27rnIL, R. C. & 1l. WEExs, 1945. The thermal degradation of pectin, J. Amer, crtem. Soc., 67, 2244, 42. )SD ARDLE, F. J. & J. V. tiExEMIAS, 1956. Effect of gamma.rndiations on the pectic constituents of fruits and ve{;etnbles, Food Technol., 10 599. 43. Mi1RLS,TAxr.En., K., 1050. Electron microscopy of developing phl.nt coll walls, Biocbtim. 1}inyahys. Acla, 5, 1. 44, NRVxosa, H. & H. DEVRL, 1958. Alkaline degradation of pectin, Cllnn. and Ind., 1958, 683. 45. 'NEwnoL.n, 11, P. & 3i. A. JosL_Yr:, 1952. Chemistry of analytically - important peetia aeids, J. Ass. off. apru. Chem., IPa,sle 1952, 872. 46. OtvENS, H. S., R. M. ]4cCRnAnx, A. D. SHEPHERD, 7. H. ticnVLTZ, - E. L. PrnPEw, H. A. SWENSON, .I. C. SIInRS, R. F. ERL eh csi:N & 1\'. D, \inci.AV, 1952. Alethorl.a used at Western Rogional Resonrch Laborntory- f'or extraction and analysis of pectic matcrials, Albany, California, U.S. Dept. of Agr., A. I. C.•J40 (mimeographed). 47. PALL!aexN, H., Fit. WEREn & I3. Da:cEL, 1944. Schweiz. iandw: lWo• eaathefte, 22, 334. ' 48. PALMER, I£ J. & M. B. HARTZOG. 1945. X-ray diffraction investigation of sodium pectato J. Amer. chem. Sos„ 67, 2122 (1945-II), 40. PERsoNms, C. J. & P. F. SrzARr, 1939. Simulation, by chemical agents, cooicing of potato tissue, Food Res. 4, 469. 50. PEYNAVD, P., 1951. Sur les mati&es pectiques des fruits, fad. agric. ee aliptenl., 68, 609. 51. REEVE,R. 14. & L. R. LEINaAOx, 1953. Histological investigations of texture in apples. I. Composition and influence of heaton structure, Food Res., 18, 592. 52. ILi?EvE, R, A4., 1963. Histological investigations of textures in apples II. Structure and intercel lular spaces, Foad lies. 18, 604. :i3. SAVmb E. & K SAVZnavncxElx, 1937. Pektin und Schutzkolloid, liollon&zschr., 79, 65. 54. SwI RRoRN, S„ 1945. A contribution to the knowledge of the acid polyuronides, Theses, Uppsnla. 55, Sxor.tAt;, E'I., 1955. Report on the colorometric determination of pectic acid in cacao products, J. Ass. o//. a0ric Chem., Wash. 3S, 605. ~50. SrECSER, R.. C. R.1':nDY & C. H. Hrurs, 1945. Kinetics of deesterification of pectin, J. plays. Cltent., 49, 563. 57._ STr•.Rr,INa, C., 1959, Drained weight behaviour in eanned fruit, Food Technol., 13, 629. 58. SxERLnac, C., 1955. Effect of moisture and high temperature on cell walls in plant tissues, Food Res., 20, 474. 69. SrERI.IaiG, C., 1959. Food Research in the Netherlands, 1957, Food TeclLnol., 11, no. 6, 4. 00. SismsoN, J. I. & E. G. HAr.r,[DAV 1941. Chemical and histological studies of the desintegration of cell-membrane materials. Food Rss., 6. 189. 61. WooD, R. K. S., A. H. CotD & T. E. RAwurxs, 1952. Electron micros• copy of primary cell walls treated with pectic enzymes, Amer. J• Dot„ 39.132. oiu,l. IHnnt. et \Iatcr. Veg. VIII, 2. 9
Page 112: fiw68c00
. 510 ASSOCIATION OFOFFICIAL AOR[CULTDHAL CIIEMiSTB [Vel.88, Na. $ <varied inversely with the quality of the tobacco within each group. The one exception was X5L, which contained 3,11 per cent of pentosane.or Os18 per cent less than X3L. . The percentages of'cellulose; in.general, followed the same pattern as the pentosans, and in every case the fifth quality of any pair of' closely related IL colored grades contained'a greater percentage of cellulose than the corresponding grade of'thicd quality. This was also true in the case of the R colored grades. : It is known that the: lignin content of an annual plant varies directly ; with itss age or state of maturity, the greatest percentagee of lignin being found in the most mature plant (20,, 28,.29)',. It was hoped. that the lignin content. of the several grades of flue-cured tobacco under investigation would give aw index of their ripeness or maturity. The results show tihat the greatest percentages of lignin were, found in H5R„ X5L, and P5L, which are considered as over-ripe or very mature tobaccos. H5R, which. eontained, the greatest percentage of lignin, was a rather coarse, brit'tle,, and woody tobacco. The percentages of'lignin in.alll'eases, both in the L eolored and R.colored.grades; varied inversely as the quality within each group. No significant differences were found in the methoxyl content of the lignin isolatedi from the different grades of tobacco. Methosyl in Tobacco. The percentages of methoxyl (,-OCHr) in the several grades represent methoxyl present in the form of methyl estersy as in the pectins; and also that combinedi as methyl ethers„ as in lignin and'd in certain uroniaacids: The total percentages of'these two forms of meth- oxyl are recorded in Table 1. The data show that the,percenthges of total methoxyl in all the L colored grades were of the same general order of magnitude. The R colored grades.showed some differences in the percent- ages of total: methoxyl and they also eontained, greater percentages than the. L colored grades: The highest percentage of inethoxy1' (1.21) was found im~ H5R, whi& alsa contained the Inighest percentage of I'ignin. The percentages of ester methoxyl ranged from,0.78 for C3L and P5L to 1.00 for HSR. Shmuk and Kashirin (38) found that the ester methoxyl (calculated as methanol) in Russian ezgarette tobacco varied from 0.4 to~ 0.99 per eent, They claimed that there was a direct relationship, between the quality of'cigarette tobacco and its methanol content; the better the quality of the tobaccoy the greater the percentage of methanol. No such relationship was found in the flue-cured tobacco grades investigated in. this study. The percentages of ether methoxyl in all grades was rather enlall and ranged.only from0.I2'to 0.21. It may bee pointed'.out, however, that H5R,. X5b,, and PSL, which contained the greatest percentages of'ether meth- oxyl, also had the greatest percentages of lignin. This.is to be expected'sinceligtin ia thee principall source . of etherr methoxyl. t I 1955]j PHILLIPBI Polyphenolsand methodi The difft stances and'.the p. methodiof Pyriki ( poliyphenols (also rather misleading:g are determined by - ducing,sugar capa copper solution, w The results on 2:2 per centfor B3 sistent relatianshil acteristies within e The percentageE The result§; indica tannin content ann grades studied. flzaldc, Citris; a. both the L and R quality within eac acid than I13L,wa: greater percentage Citriai acid, in gc the.poorere the qua the greater the pe the percentages of types variedi inver. The percentages of all the grades, - quality contained i the corresponding per cent of 1-malie : than P5L, containc (In addition to c undoubtedly presei dence of the prese tobacco which were tive test for chlorog. ing the procedure c. The percentages of - and Neisser (40) ra Rcs4rzs and if'axE together and, of th, . quanti,fative standl
Page 113: fiw68c00
addition of a saturated and the.filtrate returned acid in the filtrate was Bacom (13).as modified hod of Pyriki (32). . ground tobaccao sample dGrose (9)L ThepHof llmodel A pH meter, veral!grades of Type Iere is a considerable everal grades of this is especially true in I extractives, nitrog- cing sugars, and or- rveral' grades of this physical properties fi om feel and visual' ip '~"he art of grad- a~ ation of'grade + tobacco into grade t Tab1e 1„it is neces- ~rned with the abso- .d'e: These may vary re, such as, the seed' quantity of rainfall harvesting, and the : relative differences ;rades. These differ- na as to the chemical obtained on samples ion, asis sometimes r deductions or con- f, echemical composir ristics are based on, ured tobacco which ieed that in view off he. conclusions pre- n scope. entages of sand, in« n of certain grades IPGB] , PHILLPP3 & BACOT: COMPOSITIUN OF FLNE-CUREDTOBACCO513 with soil material and have no other special' significance. As would be expected, those grades normally coming from the lower parts of the stalks, for exampYe;, P5L, X5L,. X3L, and C5L, contained fairly high percentages of sand. The Blandill groups of grades contained relatively small quanti~ ties of sand (from about'.0.5 to 1.5 pernent)'. The sand-free ash was also much greater in the more mature, thin- bodied grades such as CSL, X3L, XSL, and P5L,. as compared with tbe. H' and B groups of grades. Petroleum Ether, Ether„ ond Alcohol'Extractiues: Low-boiling petroleum. ether is a fairly selective solvent andl it extracts from tobacco mostly fatty and resinous materials, paraffin hydrocarbons, and some of the essenl k.iaDoil,constituents: IIm the L colored grad'es, the percentage of petroleum ether extractives was low in the B group of' grades, increased in the H and C groups, and then decreasedin the X and' P groups of grades. In the R' eolored grades, the percentages of petroleum ether extractives in B3R and B5GR were somewhat greater thanin, B3L and B5L. However, the percentage of petroleum ether extractives in H5R was much greater than in H5L.. The percentages of ether extractives were found to range from 1.66 for P5L to 3',14 for CbL, The somewhat lower percentage of ether extrac- tives in the case of P5L was probably due to the relatively high percentage of inorganic components in this tobacco. The percentages of'ether extrac- tives in all the other.grades, except C5L„ were found to be of the same gen- eral order of'magnitude. Alcohol extracts a heterogeneous group, of substances, among them sugars, acids,. pigments,, and resins. In the case, of flue-cured. tobacco, normally having,a high percentage of sugars, the alcohol extracts would be expected'to be especially rich in carbohydrate material. The data, in the main,, bear this out, since the percentages of alcohol extractives weree generally high in those tobacco grades having a high sugar content. In this.eonnection it magbe pointed' out that in the entire L col'ored' groups thenewas a regular decrease in thepercentagesof alcohol extractives in the fifth quality, as compared with the third, quality of any pair of closely related grades. Thus the percentage of alcohol extractives in B3L was 45.77 and in B5P: 45.23; in H3L 45.44„ and; in 1151, 42.75; in. C3L 42:22; and 35.04 in C5L. Simil'arly,, the percentage of alcohol extractives in, X3L was 33.93 as compared with 26.09 in X5L, wbile in; PSL, which can be consideredd as a lower quality of XBL, it was 21.65..In case of the R colored group of.grades, the percentages of alcohol extractives were found to beconsid'erably lower than those in the corresponding gradess of the L colored group. The R' colored group of grades differ from the corresponding L colored grades not only as to color, but alsoo in chemical. composition. This is evident not only from the percentages of alcohol extractives in these
Page 114: fiw68c00
504 ASSOCIAT[ON'OF OFFICIAL AGRdCULTUR:IL CHEMISTS [Vaf~ S(~iy,IVq, ,$ (11) DAVmsoN; d. N.,, Spmposia Soe:.ExpU. Biol. I. Nucleic Acid„77-85(Cambridgo Univ., Pr.): (1947). (12)SanNEmex„{V:. C.,,J. Biol: C)tem., 161„293(L945). (13) SmtMIDx, G., and TuANN.Irnnssn, S, J.,, ibid:, 161, . 83 (1945)- (14) WrrxcorF; 11., The Phosphatides,. Reinhold Pub. Corp,, New York. (1951), Chap. 11, pp. 147-163. (15) JAMntaON,, G. S,, and. MOICINNeY,. R. S., Oil$ Soap, 12, 70 (1935). (16) EAULE,.F. R., and Mrr.NEU, R...T., ibid., 15„ 4'0 (1938). (17) GUEnnaNT„ N. B., J: Am. Chem. Soc., 48, 2185 (1926)':.. (18) Ltsnaevxcn, M., Dfaslobaino Zhirovoe Delo, 13„No. 4, 20 (1937);: C. A. 32, 820 (1938)t (19) ScnawMUSi, A.,. hstte u. Seifen, 46, 635 (1939). (20) Dvt-rscnMro, H.,, and'. HAaueN„ W.,, ibid,,,49„ 348(1942);. (21) RswAr.o, B., Biodtem. J., 36;.822' (1942). (22) MCCANCr';;. R. A., and WinOewsoN,. E. bll, ibid., 29', 2094 (1935). (¢3) Yoauo, L.,, iba'd„ 30„ 252 (1936). (24) EsnaEr, E. B., Ind: P,ng,.4'hem., Anal. Ed.,, 16,389 (1944). (25) SARMA, M. L., J.. lndiam Chem: Soc.,, 19, 308'. (1942). (26) ANDEnsoNy. R.. J., J.. Biot. Chem:, 44,, 429. (1920). THE CIIEMiICAL COMPOSITION OF CERTAIN GR'ADE& OF' TYPE 11, AMERICAN FLUE-CURED TOBACCO RELATIONSHIP'OF COMPOSITION TO~ GRADE CHARACTERISTICS' BY MAx PHILLIPS and AunREY M. BACOT (Standards and Technicali Research Division, Tobacco Branch, Production and Marketing Administration, U.. S. Department of Agriculture, Washington 25„ D. C.)' INTRODUCTION In the comprehensive system for the classification and gladingof Ameri- can leaf tobacco developed by the United States: Departmentof Agrietal- , ture (42),, flue-cured tobacco is dividedl into four types,. namely, lil, 12, 13, and 14, The tobacco, of each of these.fourtypes is.divid'ed' into.groups designatediby the letters A (Wrappers), B (Leaf), C(Cutters), P€(Smoking Leaf);. X(Lugs)„ P(Primings),, and N(Nbndescript), and each of the groups is divided into individual qualities which are indicated by Arabic numerals, followed'y by one letter which indicates color. In brief, for flue- cured tobacco,, the Federall grade assigned depends normally upon three ftactors: (1) gcoup„ (2) numerical quality designationy and (3)', color. In some cases a fourth or a special factor is added to designate some unusual charactenistic.. Numerical quality is based onn such attributesi of the leaf as thickness, length, width,. texture, and whol'eness or freedom froniphysi, cal injuty..Thus. C2L.designates a leaf having.thecharacteristics ofthose * The investigaCion un whicdthia mpurL'u baxdwne auudhuted with fuuds umde svutlAble. uedcr lh. Reaenrch,end, 64arkeWng:ACt of 19LL8. Ihaves: normally produced q,uality and having a 1'em, t-th` is thee graded'esigna and ot'herphysical proper portion of' the stalk, of fo color.of the type. 01'd Belt, or Type 11, (ubacco produced in the I factare of cigarettes, and and North Carolina. The tiou to the differences in t 11 flue-cured tobacco, ar clicmical composition and tics of the l'eaf'within eacl RE' There is at.present an e of cigarette tobacco, but types and includes the Gi Although~ from the stand liuc-cured tobacco is our I the chemical eomposition rather limited.,Among the t,C American flue-cured to iNmter (6). Moore reportet conventional methods), of' (,'ounty, N. C. (presumat Type 11 fluecuredi tobac (',;ranville County, N. C',, attd sorted:into scrap, trae und second grade wrappe Inadc to correlate the ahe under investigation. Ge:rner;,Baeon, and Bow of two domestic cigarette eille County, N. C.,-pn na well as'tn-ocigar type: «nd Connecticut Btoadle lvrre interested primaril~ lw»ition existing between l'whreen the types of thest d1lermine the characteris tSPcs of tobaccos examine 1)arkis,,Ditton, and.Grc
Page 115: fiw68c00
3TS [Wol:. 36, No. 8 dn each group. The ent of pentosans or :he same pattern as any pair of closel}, .ge of cellulose than 1'ao true in.'the case lant varies directly tage of llg{un being )ped that the lignin~ Iader investigation .e results show that. R, XSL, and PSL, •accos.. HSR, which, ;her coarse, brittle„ aaes, both in the L. luality withimeach -xiy1 content of' the. 1'.(c )CHs) in the A thyl esters,, as rs,, as in lignin and , .wro forms of ineth- ercentages of total' e general order of aes in the percent- * pereentages than thoxyl (1.21) was atagee of lignin.. x C3L and P5L to. he ester methoxyll varied from 0.4 too itionship between nt'; the better the Iethanol. No such s investigated' in rather small and wever,.that H5R, es of.ether meth- is to be expected . 196°~'..1 PHILLIPSB BACOT:'.COMPO.SI'rION 0F FLUE-CURED TOBACCO . 517 Polirplienols and Tanreins.-Polyptienols are determined' by sn empirical metlwd.. The difference between the percentage of:total reducing sub- stances and the percentage, of reducing, sugars (both determined by the method of Pyrilsi (31) and'ealculiated as glucose), affords the percentage of polyphenols (also expressed as glucose). The name "polyphenols" is rather misleading as it implies that only polyhydroxyphenolic substances are determinediby this method, whereas any substance other than a re- ducing eugar capable of reducing Fehling's solution, ora similar alkaline copper solution, would be d'etermined as polyphenols.. The results on the polyphenols ranged from 0.3 per cent for C5L to 2.2 per cent [or B3L, and there did not appear to be any definite and con- sistent relationship between polyphenols content an& the quality cbar- acteristics within each group, of the several grades of tobacco investigated. The percentages of tannins ranged itom 1.0 for P5L to 2.6 for B3L. The results indicate that. there is no definite relationship between the tannin content and the properties and charaateristics of the tobacco grades studied. Oxalie, C{Iric, and P-Dfalie Aeids: The percentages of oxalic acid in both the L and R colored grades were found ta.varyinversel'y with the . ,quality within~ each group. H5L, which contained slightly less oxalic acid than H3L. was the only exception. The R colored grades contained a greater percentage of oxalie acid than the corresponding L. colored grades. Citric aeid„in general, followed the same trend as oxalic acid, thatis, the poorer the quality of the L colored tobacco grade within each group, the greater the percentage of citric acid., Piatnitzki (30) also foundi that the percentages of oxalic and citric aeids in certain' Russian cigarette types varied inversely with the qual'ity.. The percentages of Ymalie acid didi not vary regularly with the quality of all. the grades, although in the C and X groups, the grade of fdth quality containedi a. considerably greater percentage of Z-malic acid' than the corresponding grade of thild' quality.. P5L was found'o to contain 7.0 per cent of d-malic acid, while X5L, which is of a somewhat higher quality than: P'SL„contained 6l2lper cent of this acid'. (Inaddition to oxalic, citric, and l-malic acids,,other organic acids are undoubtedly present in the grades of this tobacco type. There was evi- dence of the presence of chlbrogenic acid in all the grades of Type 11 tobaceo which were investigated in this study. All the grades gave a posi- tive test for chlbrogenic acid by the method of Hoepfner (18), and, follow- ing,g thee procedure of Rosenthaler (35,, p. 105),, caffeic acid was obtained'. The percentages of chlorogenic acid as determinedby the method of Slotta and Neisser (40)' ranged from 3.1 to 6',8.)' Resins and IPaxes-These two constituents are generally determined together and, of these, the resins are by far the more important from the quantitative standpoint, as the waxes are onlya minor component. In the
Page 116: fiw68c00
~ . aTS QVol; 36, No. 2 d tobaccos; In the case Durham, Wlinston, and eparately.. Inn all cases;, :ed' unstemmed tobacco ptypesof tobacco exam- cipal difference in chem- Plain tobaccos (Types ant tobaccos (Type ll). itrogen was somewhat y;.and petroleum ether t tobaccos, whereas the tal Plain tobaccos. The iethree types of Cbnstall adi total nitrogen. Type tgars; next in order was tent. In the case of: the revemedt he compositionn of Dur- 3ua different crop years c e relationship be- t~`eaf. The tobaccos grader, and the tobacco yr• puIDings from differ- , analyzed. The per- in the ]bwer leaves. _ ..e percentage . of total . )peared too be.inverselye er-soluble nitrogeni„ and loneer andd upper leaves relationship tothecom h was high in the lower :es, and increased again tlr Canadian flue-cured •d.to, the percentage of' ue-cured tobacco, Blick ietween quality andthe ed the fact that noo at- e ehemical' compositimr To (cl'assified according nt of' Agriculturc),, and. s grados with the sever- ie the grade.and general 1963] PHILLLPS & BACOT: COMPOSITION OF FLUE-CURED TOBACCO 507 . . MATERIALS Selection asd'P'raparation of Samples.-Twelve samples.of the 19'18 crop of Type II Old Belt fllue.cured tobacco were chosen to representchatr acteristio.differences in the groups and certain qualities and colors within each group. It was planned to select uoiform lots of fhrm-sorted tobaccos, of each group,,which would be two grades apart in quality as well as color, or which would have been represehtcd tiy the third and fifth qualities and by the' L and R colors. It was also planned to select the samples of each grade from M differemt farm lbts and blend them together to minimize the effect of differences in soil, climate, and cultural practices. The some- what limited. nvmber of uniform l'ots representative of. these selected grades, available on.the auction~ market at the time, prevented the carry- ing out of this plan in its entirety. Samples af'uniformly sorted farm lots were selected by competent judges of this type of tobacco from different warehouses on the. DanviPle., Va.., auction. market too represent 12gradcs as follows: B3L, 10, lots; B3R, 8' lots; B5L„ 7 lots; BSGR, 9 lots;, H3L, 10 lots; HSL, 6 lots; H5R.,,9' lots; C3L, 8' lots; CSL, 10 lots; X3L,.9.lots; XBL, 9 lots; and P5L, 3 lots. Substantially equall portions of the several farm lots of each grade.rere commingled to formi a representative sample of the type and grade.,The.stems or midribs were removed by handy and only the strip or web portions of the leaves were used for analysis: Each sample was thenn dried, at roomm temperature, ground in a Wiley mill equipped with. a I mm. sieve, thoroughly mixed, and: stored in a 2-quart aii-tij ht E2iasonn jar. - . - MaaaoDa' Alll analyseswcre~ madeine duplicate on the dried (at room temperatures) and ground tobacco~and the results (except for sand) weree calculated on the basiss of mist'ure-freeand sand.free material. Thepercontage: of sand was calculatedlon the moisture-free basis. bSaisture.-A weigfled. (1 to 2 g)) sample off the tobacco, Which hadd beem dried at room temperature,, was placed in an alumiirummoisture diah~ andd driedd for4 hours at100°C., and the loss in ueigbt was.calculat'ed as percentage of.moisture. 5and:-Thepercentage of sand was determined' by the A.O.A.C. Method (iy p. 94).. AsA'(sand free).-Thae percentagee of total ashwash determined byhcatinga weighedi sample (2' g)~for 2' hoursat600°Cs ini an electricc muffle furnace, provid'ed with a.temperature controller, and weighing the inorganic residue.. From the per- eontngo total ash.tlms determined, the percentage of sand was deducted and t'he result recorded in.Table ras"Aah (sand-free)l' Petrolcu.ne Ether Extractices. The sample. (equivalent to 5 g of moisture-free tobacco), contaii,ed irt a fritted-glasa.estraction.thimble;n was extracted for 8:hours with petroleum ether (boiling range.30-6-o°Cl) in a Soxhletextract.ionapparatus. The residual material was firstdriedt on tlirsteam buth until.the odmof petroleum other eouldino longerr be dicticctedj and itwas then dried for 4 hours at 1o0°G."I and from tliee losss inn weight, the percentage of petroleum ether ex.tractiveswas. calcu- lated . E1HerEzfructiaca.-Thcresidual tobacco from the petruleumether extraction wasexteactcdwith ether for 8hours in aSoxhlcA eztiaction apparatus, the Ioss im
Page 117: fiw68c00
512 ASSOCIATION OF OFFICIALAOIi.4CULTUnAI:,CIIEMISTa [Vol.,3(i, No. Q. settle, and tlieeolutiam wass madee up.p to ~ volume by the addition of a saturate& aqueous.uranyllacetatesolution.It'.wuethemmixed, filtered,.andthefiltrat'e.returne& to the filter paperr until the filtratee waes bright. Thel-malic acid in,the filtrate was. determined polarimetrieallyby the: method.of Dunbar and Bacon (li3) as modifiedi 1;.byHnrt4nann.(17):.. . . : . . . . : Eesinaad' Waxes.-Theseo were determinedd by tho method of Pyriki. (32)., 1,Hyd:openIon G"oncentratGon. An aqueous extract of tlioground tobacco samplpwas.prepared.following.the.procedure of Darkis, Dixon, and Gross (9). The pH off the extract wass determined with the Macbeth line-operated model: AA pHH meter. RESULTS . .. . .. . The results on the chemical composition of the several grades of Type 11 tobacco are recorded in Table 1. It.ismoted1that there is a considerable difference in the chemical' composition among the several grades of this type: with respect to, a number of. components. This is especially true ine the case:of the percentages of'sand-free ash, alcohol extractives,,nitrog- Senous constituents, totaU reducing substanees; reducing, sugars; andd or.- ganic acids. The results show definitely that the several grades; ofl this type of tobacco, which~ differ materially in certain physical properties that canbe readily determined by a judge of tobaccoo from feel and visual inspection, also differ deeidedly in.chemical composition..The art of grad- -, ing;tobacco,althoug}i.based.entirelyon subjective appGcation.of gradee specifications, does bring about a segregation of the tobacco into grade units that have distinct:chemical differences. , In the over-al2lconsideration of'the data recorded.iit Table 11, it is neces- sary to~bear in mind that we are not primaril'y concerned with the abso- lute quantities of the several constituents of each grade. These may vary from season.to season depending upon several'factiors; such as the seed strain, type of soil, fertilizer used, culturaY.practice; quantity of rainfall or other clima.tic conditions, the time and method of harvestidg,. ande the curing technique. Our chief interest is in the average relative differences in chemical' composition among the different U. S: grades. These differ- ences are so great that any attempt to. dkaw conclusions as to the chemical . compositionofType11tobaccofi•om.analytical'.dataobtainedonsamplestaken at random (withoutregard to grade classificationy as is sometimes done) would necessarily lead to mislea.d'ing,results. In this connection, it must be emphasized that any deductions or con- clusions present'ed in this paper on the relhtionship of chemical composi- tion to the various quality factors and grade characteristics are based on, and limited to, the twelve grades of Type 11 flue-cured tobacco which. were investigated ch:emieally in this stUdg. It is realized that in view of the rather limited number of grades, investigated; the conclusions pre- sented in this paper must, of necessity;, be restricted in scope. Sand and $and-Free Ash.-The figures on the percentages ofi sand„ in« cluded in Table 1, show the extent of contamination of certain grades: 1968] PHILLIPSI & with soil materiall r expected, those gracl for example, PSL, .l' of sand: The B and ties of sand (from at The sand'-free asl bodied grades such : H and B' groups of 1 Pet'roleum EtkcYr; E ether is a fairly seh fatty and resinous m: tial oil consti!tuents. ether extractives wa and Cgroups,and, th It colbredi grades; th~ and': BSGIt were son percentage of petrol than.in 115L. The percentages c for P5L to.3.14 for C tives in the case of P5 of inorganic compone tives in aJl the other g eml order of magnitu AIcohol'extraets a sugars, acids,, pigmer normally having a hi, be expected to.be esr the main, bearthi's: oa generally high in tho. this connection it ma}3 there was.a regular a, . the fifth quality, as co related gra:des.. Thus 45'.77 and~ in B5L 45.2 and 35'.044 in C5L. Si, X3L was 33.93' as con be considered as a, llov col'ored'd group of gmde: to,be considerably low colored group, The ItR colored groul grades not' only ass to O evident not only fron ~ t~7 C11 n]',
Page 118: fiw68c00
3,42U,241 15 Example 20 Burley tobacco stems wcree washed' in cold water where- by, fronu about 75 to 8070 ofthe natural content.of water- solublbsutistancese wereremovcd: in the wash water:.Thestemswere then used.directly inn the wet conditionn to make 5 a binder as follows: Onee hundoedd parts of water were brought too atem- peratnre.of.195°C:, and.tathis were added:, 16 Example : 23 Bright tobacco stems were washediin cold water where• by, ftom about. 75 to80% off the natural content of' water-soluble substances were removed in.tlm wash water.. The stems were . then dried andl ground and.d used! tomakeo a binder as follaws: Onehundredl parta of waterr were brought to a tem-peratare of 100` C.,, and to this were added: 7•00 parts by weight (dry basis) of the washed bright . . burle. l!0 7.00 parts ' by weight (drY tlasis) of the washed Y (fluecured') stems, stems, 1.05 parts diammonium phosphate, and 1L05 parts diammoniumphosphate, and 0.70 part of:triethylene glycol (TEG), as a humectant. 0.70 part of triethylene glycol (TEG), asa humect'ant.. . Coneentratedd aqueous ammonia was then added to Concentrated aqueous ammonia was then addedd to 15 bring.the pH of the mixture to.avalue oflat least 8.0but0 bringg the pH of the mixtureto-a value off at least 7:1 but no higher than 8.5. aohigher than 9.0. Themixture was then stirred for fourr hours.and.sub- The mixture was then stirredl forone hour and subse- sequently refined in a disk type refiner until better tharrn qnenBly refined inan d'iskk type refitter until better than. 99% of the pulp (in excess. water) could be sbakem 99% of thee pulp (in excess water). could bee shaken.20 through am I8 ntcsb.sieve.. ' throughh an 18 mesh sieve. Thee resu)ting, material was then employed as a binder Thee resulting material was then employed as a binder for tobaccoplant. parts boo form a reconstituted tobacco fortabacco.plantpartstoform a reconstituted'.tobaccosheetinamannersimilartotharodescribedinExampfe16; sheett inn aa manner similar to that described in Example Exampl6. 24 16 25 Example 21 Bright tobaccaretems were washed.in cold water where. by, from about 75 to,807oof the.natural contenGof water- Bright tobacco stemswere washediincold'water where-solubl'e substances were removed in the washwater:.The fiy; from about. 75 to. 80% of' the natural content of stems were.then used directly in the wet condition to make water-soluble.substances were removed in the wash water., 30 a binder as follows: The stems.were.then.dried!and ground and used. tomake. One hundredd parts off water were brought.to a tem.abinderasSoflowst perature of 100° C., and.tothis.were added: Onee hundred parts of water were brought to a tem-7-00 parts. by weight; (dry basis) of' the washed bright perature of. 1!00°C.,,and to~ this.were added: (fluecured) stems,.. 7.00 parts by weight (dry basis) of, thee washed bright 35 1.05 parts dlammonium phosphate„and (flue cured) stems,. 0.70 part of:triethylene glycol (TEG)„as ahumectant. 1.05 parts diammonium.phosphate, and, Concentrated aqueous:s ammoniaa was then added to 0.70 part of glycerin,, as a fiumectant.. bringg the pH of the mixture to.o aa value of at least'8:0 - 40 but no. higher than: 8.5. - Concentratedd aqueous ammonia was thenn added to - The miature.was-tlien stirredlfor fourhours and sub- bringthe pHofthe mucturetoa value of at least 8100 but: sequently refinedd in a disk type: refiner until better than no higher than 8.5. - 99% . of the pulp (in excesss water) could: be shaken. Themikture.was then stirredlforfourhoursand sub- tbrough an 18 mesh.sieve:. sequently refined in a disk type refiner until better than. 45 The resuftingg material was then employed ass a lhinder 99%of thee pulp (in excess. water) could be shaken, for tohaccn plant parts toformr a.recons6tuted tobaccothroughan.18 mesh sieve. The resulting material was then employed as a biuder sheet iu a manner similar too thatdescribed in Example 16. , .. for tobacco plant parts toform, a reconstituted tobacco. ExampSe.25 sheet in a.manner similarto that described in Example 50 Ian the acid wasHtreatment of tobacco parts for re- 1B• movaf of alkalihe earth minerals ofthetobacco pectin,.. Example 22 it is necessary to use quitee large vol'umesof water if it. Bright tobacco stems were washed in cold water where-isdes'tred to.reduce the soltnblee anion content ofthe.prod- by, from about. 75to80% ofthef natural conntent ofuct to a very low level. Inn thiscase,s thee use of a cation water-soluble substances were removed in the wash water.. 55 exchange resin in aelosed'.loop system with the tobacco The stcroswere thenn usedd drectly in the.wet cnndition to, parts can make it possiblee too conduct the process withmnke a~binder as follows: limited amounts of water and acid. One hundred parts of . water were bnoughtt to a, tem-The. use of aresin.. (suchh asDowex 50I W)) in this wayperature of.100°C.,. and.to this.werc added: does.not at.alP..alter the principles of thisform of.treat- 60 ment since the resin merely serves as a convenient reser- 7.00 parts by weigtit! (dry basis) ofthewashed bright, voir of acidity, continuouslv reconditioning effluent.from (flue cured) stems;. the stemsSor reuse in the.extractlan. 1.05 partsdiammrnium.phosphate, and. In the followi~ng example, the use:of a.cation:exchange Oi70 part of glycerin~.as a humeatanC. resin permits the treatment, of stems with a small fraction QCancentratedaqueous. ammoniaa was then added to: 65 of their natural! . nitrate ion.content. Hydrochloric acid is 1,70 bring the pH off the mixturee too a~ value of at least 8.00 butt usedd at intervals toregcnerateo the resin,, but' never di- %I no higher than 8:5. . rectly contacts the tobacco. N. The.tnixture was then, stirredl for four hours and sub- The apparatus used for ion-exchange. extraclion of sequanlly refined in a disk type refiner until better than calcium from tobacco stems consisted of a 20 inch di-,A1 99% of the pulp (in, excesswater)Is could be shaken 70 ameter washingg column fitGCd'withd a 20 mesh screen to,FZ . through an 18 mesh sieve. -sttpport the charge of stems and a 6 inch. diameter Pyrcx~ Thee resulting materiall was then employed as a binder colunm fdled with 13 pounds of Dowex 50. NV-8acid-for tobacco plant parts tofornr a.a reconstihrted tobacco form~ ion exchange resin heads. The valves, andd piping.g sfiectt in a manner similar to that described in Examplee permitted a pmnp tober.usedcither for recycling waters 16. „ 75 from the stem charge throughthe column os for sep-
Page 119: fiw68c00
522 ASSOCIAfBIONOF OFFICIAL AGRICUL'rURAL~CIIEAiISTS[Vol'. 36,,N0.. 2 It may be observed that therei is a,very good agreement (with respect to therelattive'quality values within.each.group of the,L colored grades) among the Shmuk Coefficients (calculated by four different methods), the I{ovalenko Cocfficients, Pyriki Quality Numbers, and with the ratios ofl the percentages of reducing sugars to the sum of the percentages of' oxalic and citric acids. However, the R colored grades show no definite. relationship to,tbe L colored grades of the same group and quality. It is alfio necessary to pointt out, however, that when the Pyriki Quality Nmn-s bers of the L colored grades are arranged in tixhatis supposed to be a de- scending order of qualities, that is, beginning with 908 for 1131, and ending with 140 for P5L, that there are some inconsistencies in this relative order of qualities of the grades.when compared with the coefficients and ratios (1), (2), (3)„ (4), (5); andl (8), similarly arranged in a descending order of qualities. Itis not known whether these coefficientsor ratios could bee appliedin the classification within each group.of still other grad'es of Type. 11 or of the grades'of other. flue-cured tobaceotypes, but from the results obtained it would appear that the subject merits further investigation. From the results in Table 2 it, can be seen~ that there are some incon- sistencies in the, an•angement of the L colored group of grades according to the Polyphenol Coefficients with respect to their relative order of'quali- ties within each group: Thus, aecording, to the PolyphenoU Coefflcients„ B5L and C5L.are of a higher order ofi qualities than, B3L and C3L respec- tively..Moreover, when the L colored grades.are arranged in.a descendingg order of qualities, that is, beginning with 2:1 for C5L and ending,with 21.9 for P5L, there are some inconsistencies in this relative' order of qualities of the grades, rvhem compared with all the other coefficients and ratios given in Table 2, and similarly arranged in.a descending order of qualities. ACKNOWLEDGMENT The authors gratefully acknowledge their indebtedness to Frank B. Wilkinson, Chief of. the Standards and Teehni'cal Research Division, Tobacco Branch, P:MIA., and originator of the Federal tobacco grading system. His knowledge of' and practical experience with tobacco and tobaeco grading, and his continued iiiterest,, suggestions, andl guidance throughout this investigation have: been of inestimable value. Acknowl- edgment is also. made t'o Mebane T.Lea, Tobacco SpeciaSist of the Di- vision, who collected and graded the tobaccos used for this investigation and, in general,. assisted.in the preparattion of samples for analyses. .. SUMMARY , The percentages of the following constituents (all cal'culated.on~ a moisture-free and! sand-free basis) of twelve grades of' Type 11 tobacco from which the midribs had been removed'.wem determined: ash, petrol'e- um ether, ether and aleohol'.extractives; total nitrogen, protein, nicotine, y-- ! 1 'i 1,9531 'PRILLIL'S total redueiIlg',sub substances,,pento ester methoxyl, p, resins.and waxes. the quality of the metllods of tobac within each group the ratio of'the p( ages of oxal'ie and (lq. Dfethodaof Anc (2). BACON,, C. W., Bull., 1032 (An (3). BERTRANn, G., (4). BLrnx;. R. T. J. (5). Batlcsrrca, EI., Psul Parey,.}M (6). CAnPENTSn,. F. itn'd:, Bul1.,,122 (7)' CAnB>:; M. H., (B)CiR/.MBERLAfN, 625-37(1937). (9) DARaus„F. R., (1935): (10) DAauIS„F. R., 23(1986). (1.1) -,.ibid., 2 (12) DARAIn, F. R., ~ (13) DUNBAR, P:. B.. (14) GARNER, W..W 970-4 (1934)1 (15) GERT.reR, IC,.: (16) H6RTMANN,.B. (1.7) HABTMANN, B. (18) HOEPPNEB„ W.. (19) 1{IS6LIN0, R:,, fobrikalioR inF (20) ICOFAL&NLO„ I (cra.&BJ Buh (21) KnUSnn;.E1,J. (22) 1\I}RSCIINER„ K (23) \4bun„E. GI.J. (24) MooRE, G. E., Reportt on the : (25) NANJI, D. R., f (20) XoRIIAN, A. G. (27) PnrcLnPS, ML,.: (28) Pmcures, M., r (29) Pnruairs, M., l (t919)..
Page 120: fiw68c00
:E4IST8~ [Vol. 35, No'. e ~. volatile aromatic sub- hacco smoke. Although the potential quantity ; not indicate the qual- esins and waxes ranged I not appear to be any lifferent grades within at there is no definite obacco grades investi- 196$]. PHILLIPS'.k BACOT: COMPOSITIOl\OF'FLUE-CURED ToBAfCOJ$19. (3): The constituents, fraetions,, or complexes belonging to the thirdl class are: petroleum,.etherextractirytes,..etherext'ractiivos,.metihoxyl (ester and ether), polgphenols, tannins, Lmalic acid, and resins and' waxes.. Acidity reported as pII is al'so apparently not defnlitely related' to, the: quality of thegrad'es within each group.. Relationship of Various "Coeffics.ents'° or "Numiiers" to Tobacco Grades.- Shmuk (30)) in. 1924 showed that the quality of Russiancigarette tobaceovaried directly with, the percentage of sugars,, and inversely with the percentage of proteins.. This ratio: Per centt reducing sugals (as glucose) Per cent proteins ita presented im, Table iship to the quality of ents listed in the tablc ituents which show a 2) Those constituents tent and quality. (3) Bnite relationship be- aq 3, total reducing h~ ~onvever; it shoul'd p by far the: largest I reducing substanees, ;roups.of constituents id class, the following ctic substances, pen« Nicotine may be con- legree only. Although tages of nicotine be- grades, considerable tween the. L colorcd on the other. The R low-quality cigarette icotine than did the cotine (and this mayy acco constituents),, a dpointof quality as a ~stquality magrcon- ation: to othertobae- e.nre l4one of tbe aultlun nnd I I has come to be known as the "Shmuk Number" or "Shmuk Coefficient." The qualityaf Russian cigarette tobacco is said to vary directly with'the Shmuk Coefficient and that the greater the numerical value: ofl this co- eSicient,.the better the quality of the tobaceo. Several modificationsdor caleul'ating the Shmuk Coefficient have been proposed by Kovalenko (20)' and' others (39). Kovalenkoaubstituted thepereentage of total nitro- gen for the percentage of protein in the Shmak.formulhand this ratio:, Per cent reducingsugars~(as glucose) Per cent total nitrogen is sofinetimesreferred'to as the °Kovalenko Coef6cient."' In 1927„ Sllmuk. (37) presented data from which he concluded that the quality of Russian cigarette tobacco is related to the ratio of the percent- age of' poly phenols to the percentage of total reducing substances. This ratio: Per cent polyphenols' (as glueose)' Per cent total, reducing substances (as glucose) when multiplied by 100, is generally referred to in the literature as the "Polyphenol'Coefficient'." The quality of.tobacco (R.ussian cigarette types) is said to va]y inversel'y as the Polyphenol Coefficient;, that is, the greater the numerical value of this coefficient, the poorer the quality of the,tobac- ca. In addition to Shmuk and his co-workers, who.have done the pioneering work in endeavoring to correlate chemical composition of ci[;a.rette tobacco with quality as determined!My the subjective methods of tobacco judges; others who have worked in this field are Rieser (34)S Garlner (15), 13huckner (5),,and Pyriki (33). Bfuckncr considers that certain constituents have a positive value, that is, they improve the quality of the tobacco, while others~ have a
Page 121: fiw68c00
3,435;829 19 20 part5 with a treating reagent.comprisingt an inorganic acid References Cited' selected from the group consisting of hydrochloric acid, UNI-PEDSTATES. PATENTS phosphoric acid and sulfuric acid untill the resulting mix- 3~,012,915 12/1961 Howar& ____________. 131-17mre.attains a~pH of from about 1.0 to 2.5', too destroy the 3,120,233. 2/1i464Battista et al. ___ 13t-143. XX tobacco.contained pectin cross-links and thus.releasethe 5, . insolublee freee pectic acid and solublee calcium and mag- .' OTHER REFERENCES nesiumm salts, washing the mixturee withwater toremove. '6he. Pectic Substances by I. I: Kertesz,., pp. 434 andd thecalbium and magnesiumsalts.off the acids„then briug- 436to.44Dind. Published in 1951 byInterscience Pub- ingthe said mixture to.apH of bettveem.6.5ta 8.5 bythe lishersInc.,.New.l°ork- addition.of ann alkaline material.selected'from the group 10 MELVIN Di REIN, AriinaryEsaminer,. consisting.ofammoniumhydroxide, alkali metal hydrox- ides and alkalii metal salts and without.any further lreat- US. Cl. X.R. ment sheeting the resultant mixture. 131-17 + 0 0 ~ N ~ Cll CD I i
Page 122: fiw68c00
3;,420y241 7 8 lution..Ih.thecaseof tobacco.pectin.solutionssuchassoht- ent, if desired, at about 0.5 to I per part of DAP:Thm tlons of.sodhrm and potassium: pectinates andLorr pectates, temperature. during the DAP treatment off the: tobacco this cann be accomplished by acidifyingthe solution until may vary between room temperature and about. 190r F. tho-pectins precipitate or. by. adding a gelatibn agent, such or higher, depending on theuypeof tobacco.being,treated, as an alcoholic solution,, preferably having a pH of from 5 Underpressttre,r even higher temperaturess may bee em- about 1I to 99 and„preferably„from, about..l to.5. The pH.of ployed-The pH of'thisf mixture is, preferably, maintained the alcoholicc solution can be: regulated by the addition of att a valuee about 7.11 to 9:0, whichh may conveniently -, ° a mineral.acid,l such asHC,.to the aleohol!Although.tNe be aceomplished.by the addition to the solution of'con- preferredgelationf agentt is ethanol, any water-miscible centrated aqueousammonia: Byagitating orstitringsuch ` organic solvent having,up tbabout 10'0 carhonn atoms may IO a mixture under the above+described conditions for from beemployed;, for example, a ketone, such asacetone„or about 1 minutee to about I day, and;, preferably, from -a diether, such asdioxane: Water-immiscible solvents about 1hourtoabout 5 hours; thee tobacco pectinsare such ass etbers forexample„ ethyl! ether,can beused„ if liberated, released and deposited' in the tobacco pl'ant eombined.withd a.water-miscible solvent,, such as acetone. parts toform a binder compositiom The resulting mix- The tobacco pectins can be recovered.by concentrating 15 ture may then be refined, for example, inn a diskrefiher„ the solutionor'suspension im which they aree present until ' until substantially aIl, the pulp(in excesss of the wateo they precipitate. 'L'hiss precipitatee might. also.o becharac- present), cam be shaken through a screenoE approxi-lerizedl ass an. intractablee mass, since the pectin solution, mntely18 mesh~ to produeea binder composition which upon concentration, generally becomes progressively more is ready foruser in the manufacture of. reconstituted'viseousuntil it.finally driesto leave a'deposita in a.gPassy 20 tobaccoo sheets. solid state. The term"mbacco. pectins" as used throughout this Whilee thee tobacco pectinss eann be separated and puri- specification.aneans "liberated tobaccoo pectins" and com- fied:before use.as abinder in.reconstituted tobacco ~ sheets, prehends pectins which have been1frced or liberated from, they are preferably employed just as they are produced tobacco.and are, therefore, not bound'd intothe:tobacco in situ, i:e., in combination with the treated.tobacco plant 25 structure, as differentiated from the insoluble, natura'ly- parts from which; theywereobtained,y the entire combi- occurring protopectinswhichs are found into aplant.celll nation camprising, the binder for reconstituted tobacco structure. The term includesthe.free pectinicc or peetic sheets or, under some circumstances, the entire combina- acid, as well as soluble salts suchh as the sodium, potassium,, tionn comprising essentially the entirecomponeats of'f a ammonium;, pectates and pectinates, and, insoluble salts reconstituted tobacco sheet: By using the entiremixture, 30 such asthes calcium and magnesium, pectates and pecti-no.origiaal tobaccoflavars are lost, all of the tobacco~is nates depending on what method is employed to liberatee employed, andd noo expensive.aad.time-eonsuming refining and obtain them fromm thee naturally occurringg i;nsolubleoperations are.required.m protopectina;.. Although.it, is not necessary, the thixotropic properties The: tobacco pectinsproduceds orliberated in situor of solutions containing soluble pectiitss can be adjusted 35 isolated' by means of this invention can hee used as.s thein the preparation of aenred sheet by the addition of solb binder material for reconstitutedd tobacco,. i.e.,, no such material5ast calcium chloride. If any complex or other materials need beadded too make the sheet. TLeyy precipitate formed.in the first step of this process is pres- can be sprayed, extruded or cast, thus.facilitating appli- enY with the soluble peetates;., the thixotropic properties eationn onto a movingg belt carrying tobaccoo dust. Under of the mixturecan also beadjusted byadjusting.the: pH 40 propercondirtionsof f6rmulationiandlprocessing, recon- to.precipitate.caltium.and magnesium pectates. , stituted tobacco made.withthetobaeco pectinsproduced: . Apreferred, preliminary step,., in accordancee with the by this invention eahibit excellent physical. and aromatic present.t i~nventionls compri=es. washi;ngthe tobacco plant properties. The ultimate tensilee and wet strengths of'f the parts, whichare preferably ground orcut to a relatively reconstituted.tobacco are good. While no other materials small size, with cold water.. Thiss water wash serves to 455 need be.added too the pectinaceousbinder, other materials remove impuritieswhirh.might otherwise hinderr the sub- can be.added;.if:desired. For,example; organis acidsands sequent, treattnents~ in accordance.withe the present inven- preservatives which may ihn themselves be of tobacco lion. Ip is particularly desitablee toemployo such a cold origin, may be added., Plasticizers, such as glycolsand'water washing step.when alkali metal'carbonatesare.em- polyglycols,, and. hnmectants„ such as glycerin, may alsoo ployed.as.the reagent in..the.first step. General7y,.sufficient 50: be added, if.desired. In addition;, the gel strength of the water should.be used during.snch~a..water wash operation toHacco.pectins can hee regulated by partial precipitation to.eover all of the: tobaccoplaniparts present. The tem- tocontrol such rheological propertics.as viscosity, fluidity. perature of the:water may be.between-1I° C. and 100° and! elasticity. Otherr additivess or dispersants may be C., but't is preferably about 20' C;, and the water wash added in, small amounts to regulate slurryingg qualities,, should gcnerallycontinue for a, . period offromf about 555 provided, however, that such substances are not added rfsh to 29'z6 hours. Agitationn during the washh is desirable, in large enough quantitiess to adversely affect the flavor - but not. necessary:. Afterr the water wash hasbcen com- or aroma off thee final product. Furthermore, thetobaccoe pfeted, the water can be.removed.frome theiobaceo pans pectinss can. be combiucdd withwater-solubleh gumss or. 7 by'filtration; decantatiom or other suitable means: water-dispersible gums commonly used asbinderss for • As discussed above, a particularly preferrcd embodi- 000 tobacco,sheets such asmethyl cellulose, sodium.carboxy- ^ment of the present invention involNes thc use of an methyl cellulose,.gpar gum{ locustbean gum, oralginates, ammoniutn or alkali metal orthophosphate;, snchi as di- although it is preferred to. minimize or eliminate stmh •ammonium monohydrogeni orihaphosphate (DAP),, for additions in order to obtainn a product which most closely thee release of the tobacco pectins: -Ifhu DAP will, gen- resembles natura ltobacco.. erally, be added to, the tobacco planD parts,.which mny, 551 Thee product from treating the tobaccoo plant parta in for examplc„ be bright tobaceoo parts, burley tobaeco accordance withh the methods off the present ihvention.~ parOs, or a mixture of the sanre,, in an aqucousso9utions may he castt directly and driedd and'd cut into particulate t^~ TheconccntrationoftheDA'Pirtmtlie aqecoussolution.is material similar in physical form to, ordinarysmoPing no0 critical, but will, generally, be in the range. of 0;5- tobaecoandlso used, preferablymixed with.tobaceo Ieaf~ 5.0% by' weight. The: DAl' and waPerr may beadded 70'cuti or. shredded in the usual manner. Thee producG may ~ separately too the tobacco. The amount of DAFshould, be cast't in sheet furm.,, in blocksor as ttireadkor otlier.:h preferably, comprise from abottt'0.01 to about.Os5 part, shapes, . as desired. An important use;, however, of thcf,D and; most, preferably, from.about 0.05 to 0.35 part (by prepared composite sl'urry orr easily molded ixolbted N weight) per part of tobaccobeingo conlacledl. Ahuma¢- pectinaceous rnass,is as a hindcr f'or groundtobaeco and lant, suchr asglycerin oru'iclhylcac glycol,.maybe pres- 75 fortitemakingofcorresponding,tobaceoproduets.suitable
Page 123: fiw68c00
nsTS [Val. 86„ No. 2 3I2, BSGR, andH5R, ifacture of'f cigarettes, he L colored gradhs n was fourtmd in the he several grades of ranged from 1.92 for proteins ranged from t C3L, which had the lowest percentage ! of .ige of total nitrogeny percentage of total ch.the'pereentages of vith quality, that is, greater percentages luality of the group. : ly lower percentages ?k-.r 4.75, for 11311, zther significant that y,, B3R, B5GR, and e than did the light- i's called to the fact' e also quite different of these graups.«'ithconstituents.. B3R, eater percentages of id'es of'these groups.. ercentages of total'l ig sugars in addition d complexes capable )per solution, ranged :iimately a sevenfold ugars there was evenn for$3L, or approxi- se grades which had 5L, H3L, H5L; and gen and proteins as, t; B5GR„andilff5R, a,and Darkis, et aL:L tmerican flue-cured etween the percent- _C lg sugars.vary P}rILLIPa JC.DACOT: COFIPOSPPION OF Fq,rPE-CVRED'. TOBACCO 515 . directly in each' group with the quality of the Lcol'ored' grades. For exam- pl'e„ the percentages of'redtrcing, sugars in B3L, H3L, t;3L, and X3L were 2'1.5,, 22.9; 20:4:, and 111.1, respectively, whereas in the case of' the fifth quality of these grades, namely, B5L, H5L, CSL, and X5L, it was'. 18.5, 20:7,,14.5, and' 5.1, respectively. In P5L,, which is a low subgrade of' X5L„the percentage of reducing sugars was 2.2. All the R colored grades were found' to have a much lotiz•er content of reducing, sugars than the corresponding L colored grades. The,percentagcs of sucrose in all the grades'were low, ranging from 0, in H5R te 1.9 in B3L and B5L. After removal from the curing barn, flue-cured tobacco is customarily stored in a pack house in the form of large piles or Bulks;, wherein thee tobacco undergoes certain chemical or biochemicall changes. Bacon, Wen- ger„ and, Bullock (2), have shown that during this treatment or storage of the tobacco,.inversion of the sucrose takes.place and there is a correspond- ing inerease in the percentage of reducing sugars. This may explain whyttie percentages of sucrose in all the samples were rs.therllow. Dcxtrin„ Starch, Bect¢c Substances, and' CeiLiS'all'. Constituents.-Table 1 shows that the dextrin content of all the grades examined was low- all.und'er one per cent-and that there was no significant,variation of. this constituent among the several grades.. The percentages of. starch; ranged from 0 in the case of X5L and P5L to 4.3 iw C3L. In general, those grades with high percentages of reducing sugars also.eontainedl more starch. Withh the exception of H5L, grades of the fifth quality in L color had' a somewhat lower starch content than the corresponding grades of the third quality.: The R colored gradeshad a lower percentage of starch than the corresponding L colored grades. The analytical' method' employed for the estimation of the total pectic substances determines all the three recognized.pectic complexes,, namely, aprotopectin„ pectin, and pectic acid. The results ghow that while the differences in the percentages of total pectic substances among thevariouse grades'were not great, the fifth quality of each.group in L color eontained' in everycase a somewhat greater percentage than the eorrespondingg grade ofthirdl quality: It may be'recalled'that the tobacco samples used, for the determination of pentosans.were.firstextTacted with.a hot 0.5 per.eentaqueous.solution', of ammonium oxalatei. This operation brings about a separation of the pectic substances (which also yield furfural when distilled with 12: per cent hydrochloric acid) from the hemiceltuloses. The furfural afforded when thee residuall tobaceo' from the ammonium oxalate extraotion was distitled with~ 12' per cent hydrochloric' acid wasAerived entirely froru the hemicelluloses, that is, from the pentosan and m•onic acid components of O' these carbohydrate eomplexes. ~ The data, in al0lcases exeept one, show that the peraentages of pentosans Q , V1 lr' O
Page 124: fiw68c00
<< 7! 50$I ASSOCIATION OF OFFICInL AGRICULTURAL CIIEStISTS[ko(.. 3s, No. $ TABLrs 1.-Campoaitionof se9eraCgradea offfue-eured'labacco, Tgpe 11 (1948 ceop)* Ta[An .arno- RiDYCIMI naeQmPe a.s. PLM (PAMD-AenMD- u Pn1eY 6P. eant% eTTnel.- LLCOaoe [i]T1C rMOrxM MrP}IM !Dn- g/APC6! evaenn (eant4- ~na IM6), RTBeC- [Ir2e nV6e fAnOLO- cUN): r1Y6e MP) ^ DsrteN Dtrrt' Drrt^J PtRtM7 7/rrtr^t'. WI'[rM yrRttn/ ~ 9R/ttPl. SBI 'Z ytrr<PI 24 8 prrNPt 41LB B3L l..la 0.77 4.34 /.85 ; 15.7i 5 23 1.45 L93 5.9U 5s87 . 2.08'. . 22.0 I6.5 BS). I.05 9.3D 4.01 1.91 . 4 H3L 1.42' 10.~YY I 5:8B 2,45 +5.44 1.95 5.N 09' 5 a.a6' I 1 9Y'. 20.1 24.5 xz.9 20:7 RSL 1.45' 9.68 5:b3 2.00'. 42.75 I.97 . . q1. 3.00 -- 10.97 7.53 1.7B. 12.22. L9! b.53 8:25 I 2.27 ' 22 ' ' 2 22.0 15.3 '. 20.4 I/'. 5 qL 6.06. 13.6+. 5:03 S'.lA 35.W 2:36 1 . .. 7CSL 8.72 I 15.2i 8'A8 r.s+ aa.9b 9 a.ls 51 2 6:aa 6 98 i 2.10'. ' Y.l+ B-9 6.6 LL,l 6.1 %SL 10 OB ' 1755 . 8:1Z L 98 26.0 : .52 I 2.2 l ~ I ~ ~ . 4.75 13.4 11.3 6 1 I 1 6GR R a 9 a~ 30 60 g: I ~ ~:1 9. 3.02 . ~ p.65 0 . mrAc . vtexORn L 1PFlm 1 u v.a. SP~ Deintn, ae.ncn '°B- srescsa ]axmnataM auawazl uemv „ sR auos e,10yM I (:a ca.cimt ..c. _ nc are) -~ N rreM eePl Ptr Wrtn3 M~' Y~cxt ~ PraM . rrrnN 5 i ytrrrN M' 9 B3L . A+n 1.9 D E3.4 0.8 2.7. 80 I 2..36 BA. 9s a.0 Y 63 , . I a.2o. BSL I 9. 20.+ 0.5 Y.B. 9.7 2,67 . PI3L 1.0: 83:9 0.8 3.3. 8.3 7 8 ' 2.54 I 2:61 8.21 8:9. 2.30' 2.U0' a.b7' 19bL O.BI 81.SI 0.8 4.Z . qg 0:7 2L1'. 0-5 4.3 0.8 I 2.31 8.3'. la:b' 2.65~ 3.62~ I.UA' 2.18 I RSL a:al 14.7 O.b. 1.6 9.2 2.75 . . X3L 1.1 12.2 0.6 0.7 8.5 3129 10:8I ILI 3.39 4 3b' I 2.3P 2.+1 7G1L . 0!5'. 5.b' 0,8 0 8.] 2 9 '. 3111 I 3:Y4 1a.51 . 4.16'. 3.27 P5L I 0++, a:8 0.8 0 . 1 2.77 $ Qe'. 1? 1 09 I .9 9.9 I 3':91 1I:5 ' 1: B'. I 1:2N H5R s9Rlt ne.a. 1¢rnOxrL IS r04T- rM:MWI oiLLlc'. crrllC HY1Gia ae~ ~/. v.e. YiT9oZRL YaCaoxrY nt' uM1CAC<u I (eecw-' t~~ Aem. .cin. acm Rk~ GnAOa: lr Tve.av mn.xv (rvru) cose)I _ _ ercN Ptrisne yerem/ naernt _ D^e+nt rauP/ DnvN ptrten{. Der.ak. lererJ i y e8 o ii 9 0 ~ i i 2.2 a S i i9 a 6a'. i.s. 8i 9 B ~ : ~ . I 1.9 . V ' I _ 113L ea4 0.13 ' 0.9] 1.2 1.91 1.56 0.48' ' 2.6' s s 0.59 9Y 8 1 BSL 0:85 . 0.13 0.98 1.9 2.1 1.b0 O.a3 . . ~_ q 1 1 53 88' a 3.5 10.27 3~~ L C 0.83 0.1B .0 0.3 a 1 . . . _ 43L 0.82'. 0.19 -- 1 Of/ r 1 I 1 5 ~ 199 2 81 IL36 ' 65 ' 2 + 9' 6 z l •10.+7 la.OS i i ls 6.l . XSL O.Bp 0.20 1.00 l.P I t s t a . a ss . s s0. . 7.0 Io-07 _ PSL 0.90 0.20 0 98 O.e . 0 B3R O.B3. O lY 1.05 - ~ ~ l ~ ~ 6. i ~~ Bsr,a~, o.9e 9.1+. 1•la I ~' i: ` I isl zac o:is'. : 1.3 . ' HSR 1 oa . ~ o Ys . . 1u . I .. Annlylkal dls, aceDl peoevWt mnd, wtstdlulAtbdoe~nanture-traevdtevd-OtaSmia Tbn9uctvleDV.m '. minld an a vwulwP4:u b+w 19G3J PunctPs wciight' wae determi tobacco. AkoAafEslracfit tiactet3'for $'.houre c calculated on thoe ba Tota! Ni{rugen.- Icjeldahf- WilEorth-0 The final digestion • continued for 4 hour Prnlein.-The.mc of Eiotir(23). The a 2:g of moisGure-fiee ~ - aeid saluAion,, themi: acetic acid solution l: the residue was dete with meecuric oxido a hyYheeonventional i NecalLne.-Nieoti'. Inbome.casea, deterr Clark (8)'. The result Total Reduting8u forthe extraction ef t moisture-free tobacco in a. 2500 mIl volumet sample and the CACO was.shaken manually to roomaemperature, The tot'al'l red4cing, eli method of Bertrand (: Reducing3ugarb- extracted for 16 hour alculSOlicextract wae t: with 86% ethanol. Om ml beaker, the alcohr aqueous solutibn was washed with eeveralsu were added t'o'the'voh cleared with s' sat)Iraoxalhte asdeacribedin solution (A) were dbtc. Sucrose: Filty m) and inverted with,hyd.given in Tfethodb of An, (1, p. 348)'. The redbc calculated as invert' so befure.inversion and th by 0.95, gave the percc Dezlrtn.-The tobr ethanol waa drred at' If extraction was calculaL tilled water wae.added, for?4 hours. It wasftes filtered; the reeidusll m; ~ Q ~ ~ ~ Q. W
Page 125: fiw68c00
C taTa (Vol. 8s;, No. 2+ has proposed a rather 3 "Quality Number" viding the sum of the nd; resins by the sum wes, pentosans, ce1l0- ]trogen, and nicotine, culating the "Quality te tobaccos. Pyriki's of'the percentages of y the sum of the per. rogen),..and..total ash, le Shmuk Cbef&cient, h the numericallvalue umber. the better the idy indicate that the ied directly with the d inversely with the lated the ratios o' aa)dl atue of this proposed tafity of the tobacco, of the tobacco Writh. loc acids are shown in , and Polyphenol Cu- as of reducing sugars IalLLlated on.moistnre- uts" or "Numbers," mlenko, and Pyriki, cal'culated: on a mois- separate and distinct lmposition of the R eolbred' tobaceo that , the three PbR colored at thee quality of te:-mol CoefHcicnt„thathe.better the quality true )vith respect to n the table. 1 i ]9(33 PHILI:IPSk BACOT:'.COMPOSITION.OFSLUE-CUHED, TOBACCO 521 TASte 2:-3kmuk,, Kooalenka, and' Po[lphenoi coefecients,,. Pyriki quality numAersand'ratiosof reducing sugars to sum of ozalic andcitric acids of several grades of flue-cured tobacco, Type 11"' U8. YaYae' B3I1 B5L H3L. HSL C3L CSL X3L X5L PSL. B3R B5GR H5R [e..- nm.S. 11ra¢r . eWra[ eeYUC. emraa emrep rnenoc' v.urr a raa~e aano Iwsmrnanmamc¢ert memc¢+rt coerrte¢xx I casnmtvnr msnrc¢ux tmrmea (3): (3) (4) (5) (B) 0) (8) (1) I . I 4.2'~ 3,8 16.0 13.9~ 11.01 9.0 900 ~ 10!.9 ~' 3~~..8~ 3.2 14.0 . 11.7 9.6~ 8'.7 886 7.6 4.6 4,1 16.9 14.9 11.81 4.7 008 11.2 4.0 3.4 115.1 12.8' 10.5 7.5 896 10.2 4.2 3.7 15.1 13.4. 10.6 5.8 720 10.4 1 2'.5.. 2.3' 8.6 8.1 6.7 2.1 4112 6.1 2l2 1.8 7.6~~ 6.0 5.0'~. 71.9 323 3.4 0(9 0.7 3.0. ~.~ 2.4~. 2.0 17.5 187 0.9 0(5 0.3: 1.5~. . 0.9' 0.9'~ 211.9 140 0.3 2'.G 1.7 6A 5.1 3.7' 8.3 500 4.0 1.6 1.4 5.01 4.33.59'.6 536 4.2 1.31.0: 4.6 3.6 2.8. 11.0 498 2'.3 (1)'. %'.Total Reducing Subelancea (ezpreseed se glueoae) % Proteins (2) %Reduciug Sugare (eepreavedl m glucoee) %~.Protelna (3) %ToW'Reduciv¢Subeteneee(e:pnnacdesgluaose) %.. Tntal Nitrogeu-% Nicutine Nitrogen. (4)'. %Redueiog SuP,are (espreseed'.ae eluaoae). %ToW.Nitrogen-%Nicotine Nitrvgen (5). %Redueing Sugen (espresecd'es Blucose): % Total.Nitrogn~. (8)i % Polyphmole (expresaed ae gluoose):X10a - %u TuIal:Hedudng Substsne<s~(enGressed ae glucmep.. (7)'. %Tatd Reducing Substancee (eeprereacd as glucnee) +% nesins and Nasm X400 % Nioulivo+(%.Total NI-%Nicutine N)+%.Totsl deh (S). %,Reduciug Suzare (empressed a+slucrcm) • Sbmatk. 8ovalenYo; and' PalypGenat Cceaidente, end Pyri(d QualityNumben werecamputedlfiurn. svrare dotaa of Table l rcenlcuL tcd on mei~tumtrce bseie. The ratio % RtdueinR wae .. edcvNted! %Ornlib+%'.Citria Acide, fromnpp~iuublh dalaaomputed on mviature-trco avd aeud4ree baere. %. ozdic +%~. Citric ~~ Acids Q'. ~ ~ ~ S (J ~
Page 126: fiw68c00
3,420,241 5 6 metallpoly-metaphosphatessuctil as tetra-metaphosphates, funnei,, or any other appamtusfrom, which, liquids can he.. Nexametaphosphates and'd trimctaphosphates, pyrophos- substantiallyremoved from solid materials. • phates. and tripolyphosphates, such as. sodium: kexameta-In summary, in the firstt step of the frst.em6odiment off phosphale,, tetrasodiumm pyrophusphate andd penlasodiumm this invention the.treatinge agent Z-R attacks the calcium tripolyphosphate: The mechanism whichoccursh when a 5 and/orr magnesium cross-links of tobacco protopcetih and sequestering agent is. employedis the fornrationn of a forms a precipitate which is a salt of calcium and/or chelate; calciumand.magncsium ions are no~longer avail- magnesium.thusremoving,the calcium and/or magnesium able to, combinewith.lhepectatefons imsolution. Many. from the protopectimand from the solution. Ih the first naturally occurring amines and peptides are also effective step of thee second embodiment, thee treating agent. Z-RR as sequestering agentss for calciumand/ur magnesium.. 10 is a sequesteringg agent whico forms a chelate of the leium . from the tobacco protopectin~ Representative examples include alanine;; aspartic acid, magnesium and/or ea m and makes the calcium and/or magnesiumunavailatile for glyeine, glycyl glycine, glutamic acidJ.scrine„tyrosine andd recombining with the pectins. With certain reagents,such, di-iodo-l-tyrosine.. Amino acidss that are effectivee asche- as DAP', the first step.of the.present process mayeomprise lating solubilizing, agents include beta alanine,. NIN-di- 15 a combination of the.mechanisms of the first embodiment acetic acid;, aminobarhiturdc.aeid, N,N-dlaceticc acid; 2- • of this invention and thee mechanism of the seeondd em-amino-benzoic acid, N,N-diacetic acid; betn-aminoethyl- bodiment of~f this invention. In, the first step of the third phosphonic acid,. N,N;diaceticc acid;; beta-aminoethylsul- embodimentt of this invention,, the treating, agent Z-R iss fihic acid, N,Ntdiacetio acid and ethylenediamine-tetra- ani acid which attacks the caltiumm and/or magnesium acetic acid. The.pH of this reactionshoulii', preferablybe. 20 cross-links of the tobaccoprotopectin and forms the betweemabout 4 and about 10 and the temperature.should,.e soluble calcium, . and/or magnesium salts„whicHarethen preferably bee betweenabout 0° C. and about 145' C. for washediawagfrom conlact:with the peetins; a periodof ftom about. 1 minute to about.24 hours. In the firststep.of each of thefirsftwoemboditnents of A cross-Iflnk destroying reagent may alsofunction par-tlie invention, the: pectin which results is in; condition forr tially as a precipitating reagent;., in aeeordancee with the . 25 releasee fromm the: tobacco cell structure, R in Equation I first embodiment of this invention, and! partially as a se-beinga monovalent inorganic catioa.n suchas sodium. In: the first step of the third embodiment,, the insoluble pectic questering agent„in accordance with.ttie second embodi- acid resulting from the acid treatment must be reacted ment. Suchh a.reagent,.a for example, is.diammonium mono- with an alkalinee material before it is in condition forr hydrogen orthophosphate (IIAP),, which is,a particularly 30 release fromm the tobacco cell structure. preferred material, in.accordance with the invention.. Theacid treated pectins.are placed in condition for re-In a thirdd embodiment, thee cross-Linkk d'estroying, re- lease bybrioging.the miature:resultingfrom.the.acid treat- agent is an acid wash which forms the releasedt but in- ment, and preferably,, after the. water wash~ described! solublee free pectic acid and soluble calcium and magne- above,., to a pHi of fromm about: 5.0 to about. 10.5'3 and,., sium salts. Generally the acid wash will comprise an in- 35 preferably, from about 6.3'3 to about.8':5, by thee addition. organieacid, such as.hydrochlorie.acid, phosphoric acid, of an alkaline materiali Suitablealkaliue materials ineludesulfuric acid or a similar acid,., which, will form soluble arnmoniumhydroxidem and alkali metal hydroxides, for calcium and'd magnesiumm saltss under the follbwing condi- example, sodium hydroxide, potassinm hydroxide and. tions. Hydrochloric acid and.sulf'uric acid aree particularly lCthiumhydroxide; and'.alkali metal salts,.suchas sodiiumm preferred. The acid may be: employedd as 0:25 Ni to 5.0: N 40 bicarbonate,, sodium earbonale; sodium, yiio,ephate,. and but is: preferably employedd as 0:5 N to 1.0N similar salts to convert thee pectic acidlo a soluble form. solu[ions, . Thebee eme alkaline rnateriall maybey aoevater-soluble corrr- sofutions. The exact dilUtion and amount to pIbyed poundi containingg a monovalentt inorganicc ealionn andd ta- will vary with the particular acidl which is used,., it.only pable of producing hydroxide ionswhen: dissolvedd in being necessary that sufficient acidbe present too convert water. The temperature of thisstepmay be from about the calcium and.mngnesiuurv present ih.thetobacco being 45 -1° Cao about!.45° C., but is, prcferably„from abouo 15treated to the calcium and magnesium sallsofs the aeid• to about.35:°C. The alkaline.materiale is preferably iu.theThe acid treattnent.is.preferably conducted at a temper- form of solid particles.or in the.formof a solution havingg ature of fromm about -I' C. to about 50° C.. Thee acid a.concentration of from about 5to aboue50%. treatment comprises reactingthetotlaccopartswith.the Q)nee:the.tobaccopectinshave.beenliberatedfromthe acid until the resultingg mixture has aa pH of from about 50 tobacco, by the removal ofthe: calcium and magnesium 1.00 too about.2.5. Preferably, the pH isbroughts to from cross-links„they should be released from the.interstices of about 1.0 to.about'.1.7;,the.must.desirable pH being.be- the tobacco:. Thatt is, theywill be made available ta.thetween 1'.15and 1t55:. This treatment will generally tie solution or suspension or, in cerlaim instances,, they will bee merely deposited onn the surface of thee tobaccopar- condncted from about:10 minutes to 24'hours, depending 55 ticles, This comprises the secondistep.of the process of thee in..part.on the.size of the tobacco particles. Thc.aeid con- present' invention. In embodiments 11 and 2' of the ihven- ditions which are necessary. forr this embodiment! of! the tion, this release or second step may be accomplished invention may be. achieved' by the usee off ion exchange concurrently with thcfirst step byreacting:.withthe,solu- resins which may be used, with suitable recycles, too ob- tion of lhe treatingg reagent..Ia embodiment 3, however,, astainthe desired pH of.the solutiondurin- treatment. The 60 indicated! above,, the insoluble pectic acidresudting from fon exchangee resihsmay bc used andi regcncrated' in ac- the treatment should be reaetcd1.withran alkalinee materiall cordance.with thcusual practices for such resins: before it can be released. Iosuchevent, therelease maybePreferably,y the mixture resulting from thee acid treat- concurrent with the additionof the alkaline material!duement is tNen washed with water. Thiswater wash, stepp is to:a washing action.. In anyy case; additional.rreating liquidd preferably conducted at a temperature of from about 15° 03 ' or water may be usedd to, elfectt thee release through a.~ C: to about 35° C. and„preferatily,.distilled.water.isem- washing action ofthe treated tabacco:particles: © ployed. When.thiswash step is employed, su0icient water Iii accordance with the third stcpp of oun process,, the skould bce used to removee the ca Ihium and magnesimn liberated and separated tobacco pectins can next be pre-N saltss of the acids, which salta are formedl inn thce above- cmnuted or deposited in a.rclativelyfree form (as com-~ 70'pared willt the lobaccoo pectins as they were originally deserfbedd treatment; thus, theresheuld beate least. 2 volumes presentt in the lobacco), fi'om the treating solution, for~ of water per volume of the mixh~reaesulting example„ by beingg formed'~ into the insoluble pectic acid'trom the acid'treatmen['-Thc.wasN water is scparated from or into an insoluble salt ofpectic.acid or by the action, of~ the.tobncco byanyy suitnblemcans, for examplc;.by con- awatcr-misciblc solvcnt':, such as ncctons or ethyl alouhol ducting.tlie wash, in a centrifuge,, filter press,. Buchner 75 tucause:awater-soltrblasall.of pectic.acidto:go.outofso-
Page 127: fiw68c00
b18ASS9CIATION OFOFFICLVn AOnICULTUIGIL CHED7ISTS' [ITal. 36, No. 2 smoking of tobacco; the resins break down into volatile aromatic sub- zstances,, whi'ch eontribut,e much to the aroma of tobacco smoke. Although the. total content of resins affords some measure of the potential quantity of aromaticsubstaneespresentin a tobacco; it does.not indicate the qual- ity uf the aroma. The results on the percentages of restns and waxes ranged from 8.85 for B3L to 11.07 for H5It, and there did not appear to be any definite relationship between the quality of the different grades within _ each group and the content of'resins and waxes. From the results obtained: it would appear that there is no definite relationship between, the pH and the quality of tobacco grades investi- gatedt DIBCUHS1oP'. - 1'n the over-all consideration of tflle analytical datsu presented in Table 1, and viewed from the standpoint of their relationship to the quality of the grades within each group, the various constituents listed' in the table may be divided into three classes: (1): Those constituents which show a -direct relationship between content and quality.. (2), Those constituents which show an iwverse relationship between content and quality.. (3) Those constituents which. apparently show no. definite relationship be- tween tween contentand'quality.. . . (1)n xn the f(rst' class may be included alcohol extractives, total reducing, substances, total sugars, reducing sugars, and starch. However, it should be pointed out thatsince reducing sugars make up by far the largest proportion or fraction of the alcohol extractives, total reducing substances, and total sugars„ the effect of the three last-named groups of constituents is due, for the most part, to reducing sugars. (2). Among the substances'belonging to the second class, the following may be 4nclluded: total nitrogen„ proteins; total pectic: substances, pen- tosans, celludbse,Jignin, and oxalio andi citric acids. Nicotine may be con- sidered as belonging to this class in a rather limited degree only. Although no significant differences were found in. the percentages of nicotine be- tween the third and f$th~ qualities of the IL colbred'grades, considerable differences in the nicotine contents were found between the L colbred grades on.the'one hand, and.the R colored grades on the other. The.R coloredl grades, which as a class are considered as low-quality cigarette tobaccos, contained much greater percentages of nicotine than.did the L colored grades. It is realized that in the case of nicotine (and this may perhaps be equally applicable to. certain other tobacco. constituents), a too higheontent may be as undesirable from the standpoint of quality as a toolowcontent.. It iss eonceivablethat, tobaeco, . of best quality may con- tain an optimum amount of nicotine, espeeiailyiu relation to.other tobac- co constituents. e1Me ~in4rpretatione and upinionn expressed' in the iullowing pan.enphe.am thoee o/1he evthon und ae evt intevded to,npre.ent the combined:opiniund of the IDivaion'metaH:. I ]953] PHIP:LIP®.k (3). The constitt class are: petroleun andi ether), polyph Acidity'report,ed asquality of the grade: Relationshd'p of VL Shmvk (36) in 1924 varied directly witl percentage of protei P, . has come to be knoe The quality of Russ Shmuk Coefficient t efficient, the better calculating the Shp. (20) and' others (39). gen for the percent, PL is sometimes referret In 1927, Shmuk (: quality of. Russian ci age of polyphenols t ratio: I Per cent when multiplied by rr'Polyphenol Coeffici is said to vary invers the numerical value c. co. In,additiont.o Shu work inn endeavorir toLaccowith quality judges, others who he PSr6ckner'(5), andiPy Briickner considel that is, theyimproi
Page 128: fiw68c00
1 1111. SlllrkOutrn eollkummco gl6idl hinsldltlidS SrlJidltewirkrmg siud udr-r nicht D1it: Hilfc vrrlr. Vis-cagRlPlr-1'rilfunlR•n k:um enon weilorliin Ixsliinme•n..I wib Sllilkl• anlhcrritr•t wrnlcn snllte.. rnn sic in cinc Sddidttr zu iilxrflihrrn: ?i3. Rriifungg dr.cKlefiecrnl%genn, Failo d( r wtdSiig;ten I:igensehafteu emvr Stfrliehte isG d:wkk.livl rfahren . d Is vcrantwortlidt dafktr ist, daR. dle. Fastrrndan ;tn dcr Garnfl.kdtc h:oftcn und. Rei- hungskriiftenn cntspredtcnd wide•.rstchcn. Gul :nt <lieCarnfliidie geklL6te fi"ascrende\, hreehen' nidrt alr; :mdt d4s-,:114sl:udx-d' kblciht dmmo acrint;: Natui'lidt gest;dtD1m sidr andS die LR¢iRltraft' der mit einer Sdilldlte von gutem Klehvermagere hchandclten Garue vurteilhalt. Das' N:Ieheverfahren ist d'eshallr eia' :iuRe•rstt widdiger' P:Iktnr hei: der Answahleines Stlylidllemillcls. \4nn Priift.es in drr Weise, daB efnt t'ntsprcdrendl In;Grnskopischer Stoff. vonn fanerigee . Strukinr mi.t Schl4'htrni gltic$er' Konzenlmlion geslit-ti1,M.wird. Soine Fcstigkr~ it nrmittclt man von unff nndt, tier Siitli);Img. lnr foTge•nden sciat die L•rge6nisse etner ih dieser Ridnmlg' duruhgefiihrton Untersrdiung augefiihrt. .. f:ilr 90 g/nr" ~chweres I6asdlpapier srnud'e in ?.5.Imn: h 4110'enur grnfieStreifen zcrlcgt, die an efner. ' Sdiapper-Streifrurcilimasdiine gerissen wurden. Reif3• krafl Imd Reifldchuum;.ivurden festqeliaften. \V-eitere derartige Lasdtpnpierstrcifkm \vrndenn nunmelir mit versddcdenvn Sc'hiidlte•.n gesuttigh Dl+r. Silrlidtteuber- sdrnR \eurrle mit eincm PederbclAsleten (L7uetcdlwal! zenpaar entferuf, dann wunlen (Ile SFreifen bui 7.immartemparallrr eetratl.nct und t'nr dern ReiRon 24 Stundem ]ane in einem Klimasdtrankk in (f(P!n rel. Luftfeuchte konditiuni'tnt. Von ji'dcrn Muster wnrden. Talel 2. ReifSkrvR undi Ruibdefinung v r mit versehiedenem 5i1i11thtrue Hni mli•.nddedllehcn Aanxennstinnen gekwnktcm 90 g'mrsdtn'rrcm GSSrtln'nnier . „ Bcn,r.nnung rlrx.Pni(.roffs F:ov.en- ~ Ruillt:rafr Rr10! 1F.3SIidrtemitttris) emtinn ~ ~ drhnung', . . .. ~ . . Ys, . ~kV ~ . .. .n . hzrmffndrurl:.. i:3 l.ur 1.4 g 10i7 1 X' 10 K7' . ],1. \tNl.tStirt:C 4 8 r:fi . 9:51 . 4.9: . . ns II,N n.9 . .. . . ~ ~ .. 5 . ' 10.2: - lA 111-'' 1.9 \t'elznlsliffke S..I 3.3 1 n.n 1.8 g 1.2 ' 1 M1 g .g' 1.4 lo ln 7i 1.5 n~rlma;e . t.il 1 a 4.8 1.5 S 4;i Lg g. .5,5 1 R In 5.7 ^-.ai (CSIOt{1ng.ui.anw.F,dmikh ? Y11 n.8. A 7:n 0.6 ' 111;' 1.2 ' q IO,:L 1.2 In : 1.1 Snlviln.o 1W' !,: 1.4 tS,hdlvn. Il~-llundl. al .SA ' 2,11 6 0.5I :n 8 6.6 _,n Ill 9s 3.0 Virr.u.d 171' 4.4 1.11 II"nlYVl,qlalknln,l;, I. Iff,3 1.1 Ihvdr.t) n L'':T 1,) R. 1^,1 ^•B M I: 9 -;0 F,n u Ia•r' s, 1 5 1-4 (P„h an 9a1WJnd1 Ji Rg 1.6 Ih,rth.l) 6. 4.1 1.5 N'. 5,^ 1.9 In NIS .:1 25' Sl'reifcmgcprtift; die 1':iqchnissc sind in •fafcl 2 r.u- sammeni Es wurdr jewcils die Differenz der Ruifikrafl-Rcifidrlinmty;s-Wcrtr. varr den gesiittiglcn und tmgv4itFi);Ir-n Prnhen crrrdinet't trnd fn: Diagramm ('Rildl.5). aufgctrageu. Atts'clen 1'tiifr•rgcbnisscn l:rssen sidt folgende Sdtliisse zit'hc•n: Allc Sddidde.n bcwirkc•mnine mclir odcn.rerti- {,tr slarkc7unlbme.'.dcr Ri•iRkraft, mtd zwar im ldin- l lid::' anf die Ahh:ingtgl.clt dcr Sddidntkonzentratinn. Die Diffcrenz d1r Ruilikr,dt von nut hatltrsdilid'den (Starke) hehandblten PrnlLen zeigt lici eincr konznn- tratian: vou 10"/a einen Wert dcr haltcr als 10 kp) ist. wroboidie mit Kartnffi•lstarke gesd9idrtete Probe deu hiichsten \Vert von 1Gkp gulicfcrl hat. Unter den syn- thetisdteu Sddiehtemittclm ist das. Produkt Vinarol, eih Polyvinydalkobolderivat; mil.t einer ReifSkra:ft von 1i2,9 kphervorragc'nd,p das gliridte gilt audi, fur das PtoduhQ CIM[C,mildem cine liei(Skraft von 1P;5.kp.er- zielt wrtrd'e. Der\lindestw'crt. von 5,17kp R¢IRkraft erga6sidi mit. Bentonit. Rei diesem, Produht: konnte audi beohadrtet werden, rhlR''3 sidaa die ReiOkraft in einem,engen Rereidi.hewegt, rmd zwar 1Setriig(: siearei ?°.tu konzentration 4,1kp rmd Gc•i 100en Konzentration 5,71;p, Die ReiRkraftzunahme verl'anft in keinem. Fall.(Rento- nit ausgenommen) linear mlt dbr Sdrlichtekonzcnt¢a- tiom Die Werte der DelSnungsdifferenz erfahre\ eiilc mifRige Steigerung mit zunehmender I€enzentration uncPerreichen bioi einrr cinzigen Piobr (Solvitose 114, 10"/i fCatuentration)) denWert Vm Die Versudte Ibeweisen,, daR'fl die' Papierfasern nadi ihrer Dmpr'.ignierrmg.mit dbn versdSiedenen Sddii3tte- mittelit zusammengeklebt werdel. Das TfeR' des Ver- kicbtms wird durch (lie ReiRkraftzmnahme'.angedcutet. Wegenn seiirer F.infadlhcit lann mit: dem besdrriohe- nerr. PHifverfahrcn das 1:IebvennPigen der verschiede- nen. Sddiditemittel anclv in den Retriebslaharatnrien leidit ermittclt everden $. llPas Piiifen vnn Schliehleflilmen , 3.1. Pritfimg drr Reifikrnft und Reif3d'elinmlg, Die Untersudiung der plrysik;disdten Eigenschafien deraus versdtiedenen Sdtlidricmil'leln verfertigtrn. 1'e17: 7nNgkeltseige ratlhm gesd W eines ungr •Arn Baumwo: t1r1••elnhcit R Rild 5. CrafiedreDanlillla ; dor AI bef Ligtx:4l{.. Farloff 1 lurke• ti.hl ht uelr. ~f P Re 10. lt f1.At: C.SrhltAt ,Inl ~- Wnsenl>non
Page 129: fiw68c00
r. s u I r~~ t I 1 I 4000 20~00 1600 1'.200 800 z. FREQUENCY, cm-1 Figure. 6 Infrared spectral cemperisonn of cellulose: isalatedfrom tobacco and cotton. - 1 1 1 11 1 /_ 4'000 2000 1600 FREQUE'NCY, cm"1 Figure 2.. Infrared' specTral, . comparison of' pectin isolated' from tobacco andcifrus pectin. (Tob'accn. Saienae 3E)'
Page 130: fiw68c00
506A880CIATION OF'OFFICIAti,AGAICUI.TURAL CIIED[ISTa, [U01. $s, NO. 2 constituents of Tyrpes'.11, 12, 13, and 14 flue-cured tobaccos. In the case of Type 11, the tobacco was subdividedinto the Durham, Winston, and DanvHle sub-types, and these were examined separately. In all; cases, analyses were made on a mediam grad'e of. redried unstemmed'~ tobaeco used'.for the manufacture of cigarettes. The several typesof tobaceoexam- ined were not classified in2b U. S. grades.,The principal difference in chem- icall eompositionn was found between the Coastal. Pl'ain tobaccos (Types 12, 13, and 14) on the one:hand, and the Piedmont.tobaccos (Type. 11) on the othezc Thus, the percentages of total. nitrogen was somewhat higher, and the nicotine,, total nonvolatile acidity, and petroleum ether extracts were considerably higher iiu the Piedmont tobaccos, whereas'the percentages of'thesugars were higher in the Coastal Plain tobaccos. The chief difference in chemicalcompositionbetl+•een the three types of Coastal Plain tobaccoss was in: the percentagess off sugarss and total.nitrogen. Type 14 was found to have the highest percentage of'sugars; next in orderwas Type 13, and Type 12 had' the lotcest sugar content. In the case of'the percentage of total nitrogen this relationship was reversed. D'arkis;, Dixon, Wolf, and Gsoss (10) studied' tlhe composit'ion of Dur- ham flue-cured (Type 11)' tobacco, produced. in four different crop years under varying weatfier conditions and-determined the relationship.be- tween chemical composition and stalk position of the leaf. The tobaccos produced'in three crop years were sorted 6ya farm grader,and the tobacco fi•om.the fourth crop year was analyzed.as primings or pullings from differ- ent levels of the stalk. In all cases,. the entire leaf. was analyzed. The per- centage of nicotine was low and the potassiumm high in the lbwer leaves. whereas in the upper leaves the reverse was true. The percentage of total sugars was highest in the middle leaves, and appeared to be inversely related to the total acids: The total nitrogen, water-soluble nitrogen, and a-amino nitrogen were all relatively high in the lower and upper leaves andall these: nitrogen.fiactions showed an inverse relationship tothe cou- tent of total sugars. The percentage of soluble ash was high in the lower leaves, decreased to a minimum in.the middle leaves, and increased again in the upper leaves. According to Ward (44)i who was working «ath, Canadian flue-cured tobacco, the quality of tobacco is directly related to the percentage of sugars'in the leaf. In the case of New Zealand'flue-oured tobacco, BGck (4) found that there was a fairly good agreement between quality and the ratio of: total sugars to: total nitrogen. A search throughout the literaturehase disclosed thee factt that noo at' tempt had previously been made to determine the chemical compositinm of the various standard grades of'flue-curedl tobacco (classified acoordiog to the systemdeveloped by the U., S., Department't of Agriculture), and to correlate the chemical composition of the various grades wi~tli the sesrr- al charaeteristicsor qualityfactors.whicli determine the gradee andgcnrmd usefulness' of! tobacco.. 1953] PnILLIPa h. DAc Se(rcteon: and' Preparc of'Type 11, Old. Belt H acteristic differences in each group. It was plan of each group, whichtcc or which would'.li:ave be hy the L and R.coloroR grade from 10 dill'erent theeffect of differences what limited number grades, available on.the ing out of this plan in it were, selected by compe warehouses on the Dan as follows: B3L, 10 lbte 10 lots; H5L, 6 lots; H5 \5L, 9.lots;, and P5L, < farm lots of each grade i of the type and grade. 1 onl~ the strip.p or webpc sample wass therr dried equipped with a 11 mm: : air-tight Mason jar. All: ana[ysess were made gronnrt tobaccoand the rer rneisture-fnee and sand-fhce mnintive-fiee basis:.. Afoisfure.-A weighed (1 at rnnm temperature, was 1 Iluurs at l~ee°Ci,, andd theloe: Snnd.-The percentage i p. 04). Axh (aand-Jree).-The p< Wl'i4l1cd sample (2 g)) for 2 t" aith.a temperatureicontkolh "''nt,ige total ash thus deter "suIt recorded in Table 1 as f`rtrolcum Ether Eztrotlii toL:,rrn), contained in a 8itt prtralcumn ether (boilin In,,. n•,.idual material.was fir 'r1'~r coutdl no longer be deti rr'uut'hc 1083 in weight, the lat~.d. falnr Rxtracfiucs.-The r +n+ u.tlraccted with ather, for
Page 131: fiw68c00
. 9,?88;T34. dry powder, particle sizesuse3di.n this invention arepref.so that at3east'one square f~eoflmaterial has ehis prop- erably similar in sizee to ehee tobacco particles and may hrerty;, smaller, Cellulose gLycolic acid (acid form of.carboxy-T8e finely divided or fragmentedtobacco,magbe prc- methyl cellulose) iss a preferred film formingg materialt paredd by grinding or by otherr fragmenting means. For sincethe: driedi . cellulosew glycolic acidi issubsetantially 51 example, dust' may be used. Sheet mad'e entitely of dry initially water resislant: Hydroxyethyl carboxymemyl ground tobacco iss a preferred form of the invention. eellulose„viseose;.andlgalaetomannan.gum.dispersions asTobaeeo whicbis entirely dryground is tobacco which well''aswater insoluble atgin-compounds when properly has not nndergonee comminution in the presence of ax+ ' formulated are other polysacoharides.which can be used. cesss liquid', such as. a wett milling.. Satisfactory tobacco Pblyuronides inelude alluronic acid containingg poly- 10sheets0 cani bee madee from finely divided tnbaccowhick saechandess suctih ass pectins and. pectin derivatives,, peca will'pass through a 20 mesh screemand will be mostly re- tates;. pectinates,. peetinic acid'and' pecticc acid forms as tained by a 325 mesh screen. A preferred particle size well.asalgins, algin-0erivatives; alginates and alginic acid range is between 60 and 250: mesh.Small tobacco par- forms. Rolyuranid'essuch aspectiuss may alsoo be usedi ticles appear to burn more evenly thaa large particles. In particular water insoluble pectates such asealcium15However, whil'e colloidal tobacco may beusede for a and magnesiumm pectate aravaluable.adhestvcs: Any of minor.partof'the blend',preferablythe.larger designated these materials~ may also be used to. form laminated: to- particle sizes are employed as these.tend.lo give a.belter bacoosheetsbymethodssimilar to those described in c•o- burning sheet;. pending avplications S. N:. 124,044, . S. N: 220,174 andi Tobacco~sheet material prepared aceording,to this in- S:,N:.262,575, now respectivelyU. S. Patents 2,734,51020vention has preferably aa moisture content inn the range , and 2',734,513, and. 2,734,50, alll issued' February between 8% and 24%.. A particularly desimble range 14. 1456.. of moisture contcnrt in cigarette tobaccoo is 9% tu133'c. Adhesivefi1me forming.g materials used in this inven., andd in cigar binder 16% to 22% onn a dry tobacco basis. tion may be variouslydistinguished'.aseither soluble,, sub-Some inorganic fillers which may be used in powder stantially insoluble, water resistant and initially water ~8orm„for.example„with tobacco sheet material arekaoliie insolhbie.. AA true solution is regarded asacomplete: dis.and Fuller's earth.. Among. suitalile organirc fillers are persion ofparticles~ on aa molecular level wherein each various cellulosic preparations. Fillerss may range frommolecul'e ieindiividually completely di'sasociatedl from . 2% to 15% by'weighty of the frnished sheet Variousothen mNecules.. Sobstantially 'rnsolublee materiaishave food'.dyes.may alsobe used immanufacturing the 0obaccoo such.3.lowdegreeofsnlubilityasto.apoearunderall.ordi- $0sheets and foils. nary conditivns of tobaccoo use.to be.insotubleand:these Finelydividedy tobacco.whicli is prepared, for example, materials maintain a self. snpportingfilm coherence even as described above, ismingledwiths an adhesive formuta- when completely wetted by water,, saliva or ordinary tion which.h may includefiberse to form aa slurry or a sus- casing.solbtionsfor w practicaliworkieq span of time and pension. A minimat quantity of_ water is employed in indeed willl hold together even while completelyim- 35' the adhesive formulation to avoid leaching solubles.frommersed..s water resistant materials have aweta strength the tobacco. The viscosity of 6he.slurry is controlled by between soluble materialb„such. as methyil cellulose, and the relztive.amount~of water, tobacco and adhesive used.. substantiallyinsoluble.materials;.sueh~as cellulose glycolic To promote thee mingling, of tobacco particles an& film acid.. rnitially water insuluble, material does noo formforming agent, the slurry is agitated'd thoroughly until all. a truee solution. but may be: appliedd in agelatinousand. 40 the particles are completely wettediLMixing may con.dispersed condition to tobaccoparticles. On the otherr veniently be done in a ball mill. 'Lbee exaett relation off hand,. initially soluble materials suchash the sodium salYball.size and volume to total roolumeof the mixingeham-of.carboxymethyllcellulose.can.be converted to ultimately - her will depend upon several factors such ass viscosity,, insoluble forms after a tobacco.o sheett is formed by thee particle size of' tobacco and proportionn of adhesive: ma-applicationof inselubilizing agents such as acids ormetall 45 teriall solidss too tobacco. salts which.ean.converth the adhesive toan.insoluble form.. Alternatively, lhao tobacco particles and dry adhesiveInitiallyinsaluble polysaccliaride adhestvematerial.isless(withe or without fibers) ) may be mixedd together and aa than freely soluble at't at least one stage in thee manufac-slurry{ormed with the mixed dry particles. The producat lure of tobacco sheet material prior too the final'' slicet, of either method may be applied to.a lielt, by casting or forming operation: 50 spraying for example, to forma.coatiag film which is then The folm forming, aaentt is the structural foundStionn driedd and'removed in a continuoussheet:s ofthe sheet. I'f thee film forming agent is weak ordis-The viscous slurry can also be shapediand formed intocontibuous,o the sheet willl crumble and disintegratee intoa sheet by calendering, extrusion or molding„ when the dust when handled in tnbaccomaehinery, When to• viscosity is veryhigh:. bacco sheet material'' is fed, from continuous rolls into 55 Dryingthe wet material is a.part of the sheet forming automatic cigar making eqpipment„its: crimpingandl set- operation, and isnecessaryin.mosf cases.to achieve sub. ~ tfing propertiess may be critically important. Tobaocoo stantial water resistance:. Themoisturee content of tha sheet material made accordtngto thiss invention producess sheett cann be adjusted byconventional tobacco treating desirable edmping:.andisetting properties.for use imauto- methods. The finished d}ied.sheetl may'be conveniently • matic cigar making machines and other machineryfor 80 handled in rollform. . fabricatingl tobacco smoking articles. The tobaccoo sheert of this invention has many usefol , The tobacco can bee from either leaves or stemsand's applications; andsmokingd arti[lesauchas cigmsy cig- • need not bee byproduct materiall although. one of'f the eco- arettes, piBe totiaccoas well as chewing tobacco made in nomicadvantagesofc thelnventione is the utilization of wholcor in part.fromthis sheet material, are.part of the0'otherwise useless fine qualilytobaccowhich often 65 invention. The sheet material mzybe fed from rolls so0automutic machines, for example, cigar machines, for usa crumbles from the Icavess during ordinanyprocessing. ~' as a binder or wrapper. The sheeCmayatSo be shrtdded~ The preferredl flnished sheethas a tensilee strength.h and for filler in pipes;.ctr,arettes, and~eigars. It may bcmixed~ thickness approsimalely that of natural lcaf: tobacco. Of ~ course, the strength and sheet thickness may be adjusted 70 with,shredded whole tobacco or used alone. la.may also~, serve as an outsidrwrapper for cigars or ciaarettesand.r,b for parliculhn applica[ions, A.preferred thickness range has the advantage of uniformity in appearance and in(a, is between .002~^and: .011". Tensile strength may be,, physical properties as well as uniformly blended flavor: for example, about 400 grams per inch on materia1..003"' The inventien is more partieularly illustrated and de-thick.. The shect is self'f supportingandcohercntl even scribed by the following examples which showformula-after immersionn in water.Ttlis feature may bC d4dAid 76 /iaas of adhesive filmforming, agent.
Page 132: fiw68c00
524 ASSOCIATION OF OFFICIA'L AORICPJLTURAL CIIE8II8Ta [Vol. SB, No. °d (30) PfAmxrTZxa, M., Slatt Iast: TobaceoInvesfigations;, Krasnodar (U:S.S'.R.)ButI...51.. (1920); ibid., 81, 23(1931)'. (31), Prnisc, C., Z.. Untersucli. Lebensm., 73, 106-9. (1937);.ibid:,.83„515-26.(1942).. (32):. -, ibid., 84, 225-30(1942).. ' (33)I -, ibid., 78, 162-79'. (1939);. 82, 401-16 (1941).; 84', 36-44 (1:942);, Z. Lebensm.-UntersucA..u. Norsah~, 88, 404~7 (1948). (34)I Riasen„A., Iniiieariar Ttit4nInsditusu.Raporlari, 1, No. 1, 38-47 (I987): (35). RonwNTnAf.En,.L.,."Srundzuge.der Ckemischen P,(tanzenuntersuchung," Borl'm,. Julius Springer, 1928. (36): Saxxrvx, A.,. State Inst. Tobacco Inpestigations;.Krasnodar (U:S.S.R.)' BuIIL, 24(1924); SHhtUx, A.,.and BALAauxaA,. V.,,ibid.,,Bull'.49, 5-83 (I929); Sxxvx;.A.,. Izpest'. Akad. Nauk S:S:S.R.,. Biol. Series, No. 6„955 (1939). (37) -, Centrat Inst. TobaccoInoestigations,. Krasnodar (U.S.S:R.)~ Budl:,, 33' (1927). (38) Ssnrvs, A., and KASInnIm,. S., State Iitst Tobacco Inoestigations, Krasnodar(U.S;S.R:) Buit:, %(1920). (39)'Sauax, A., "Chemistryy of Tobacco and Manufactured Tobacco Products," Krasnorlar(U.S.S.R'.), 1930;.andneweditionof.thisbook;.Moscow„1!948.(In Btussian). (40). Swrre, K. H.,, and Nerssxa,, K.,, Ber., 71, 1816-22 (1938)'.. (41). Sntrnnow;A. I., "Biochemie des. Tabaks„"TLe. Hague, W. Jlfnk,,1940:. (42). U. S.. DeptL Agr., Bur. Agr. Piconomics„ Sertdce'and Regulatory Alnnouncentents, 118 (Nov:1929); Fedsat'.Register L„ 1045 (Aug.. I1, 1936)';',12, 8041 (Dee..3, 1947)L Classification of LeafLTobacco (covering:Classes, Types and Groups of Grades), 7, Code of Federal Regulations (1049)'.Part 3% 1 et seq; Official Standard Grades of Flue-Cured Tobaeco(U. S. Types 11, 12„ 13 an& 14), 7, Cod'e of Federal Regutations. (1949), Part'29.301 edseq. (43) Vlcs6ca;. F., and SaxwAereca; A., Ber., 63, 2818:-23(1930). (44) Nwnn;. G. M.,,Dominion of Canada, Dept. of Agr..Pubiication.729, Tech. Butt., . 37, 41-55 (1942). THE SAMPLING OF CHEDDAR CHEESE FOR ROUTINE' ANALYSES' BY W. V. PRICEj W. hi. WINDER, A.. M...S'wANBON,. and'. Hi H. SoM- stEn(Department:of Dairy Industry, University of'Wisconsin) Cheddar cheese is: made in many different styles which commonly weigh from two to 300 pounds. The cheddar style which weighs.approxi- mately 751 pounds is one of'the most important commercially. It is bought and sold on the Wisconsin ChceseExehangeeach week audlis the:style most commonly used for export and military purposes; it is usually sold under agreements which reflpire', a knowlfdge of moisture content: This report disaussess thee problem~ ofl obtaiuingg representative samples of the cheddar style of cheese for analysis. Although' the study is con- • Published with the appw val of theDireetor of'the Wi.cunefh A®dcultumi Eiperlmeat Bt.Uao.781e wurk wa.euppnrted iu part t/y a erantfrom the.NaUou.llCheeee Inatitute. + 4 t r 19531 . rRICE ellal.: ses corned primarily witl torr fat must use the E O,Q'u;fa1 and'. Tertta4i cut from the cheese fo properl'y drawn, may I except when measurh that factors such as'. c determining the. naturc It is common pract from aRly convenient F lifted fiom~ a box of eh, exposed sttrface; occasi• cheddar. More than on discussion the term "va a vat from the same m It is common knowle dars may vary from ch, tors that the moisture c cheddars if the cheese no general agreement o though the methods of variations woul'd not.hc a vat lot of cheese. Iu this Iatioratory a Three to four g{am sar, in 50 ml Pyrex beakers cooled to room temperai Samples were, dried f draft oven operating at several reasons. It gave with the official A.O.A.' idontical drying treat'mc necessitated drying betv the same oven. The forc of oven is commonly us, s7ilt's of'this study shoul factory reproducibility o r,f difterences betlveertdl t•cntand a standard devi •:OIIviaf ¢nd'Tentnein! MXhud. /aiiiun, 045, p„e 336..(Sevenlh,E liuy Yb4nls lfulnUCeendlWal
Page 133: fiw68c00
Sn(drL J'.:.Waql.Sizing; W. R. C. Snri11L1'nblirhing,Co.,,Ab I:mur 19.56. Ramn.crrlrq. K.: MnFY. T.•.rilmdm. 13 (190t), S. J9x•. Sdrm•Jalar,.K:: Utxdw.'prxliltedm. 9 (LV.id)L SL515. Rnrnn.rzrrh~r,. A.: Mnpv. 6rm. Fnlzynirat fl: InlSfll', S679. idemi J. Soc: Teatilr and. Crllulu.w Ind. llrlfnr, 16' (10571, . S. 77.3. idcm:.Btnky, Kem. Fni'.pnirat Ha&(IIIS7), S._OA. Idrm:Trztil Pra.is 1.1'.Ilsia)„S.09a. Neumrtnn. 6:.: Mrllinnd ll~xtilLrr. 1^- (19:11), S..A/9. Kenk, K.; Tr.til Ptaxii7(n1.i91, S. G9A. N'rr)krr, A R:l[bv. 1!. 15 (u11G1. S. _1I11 Ahrnm.r, l:.:. 0 ... 1. . i.• r1015),.S. 11., Srfde), FI: Wpre tiiziirg. \V. C. 11.. Snritll I'uGli.h/ng(:u. /I9.SM), S. ^_451. Hnnrn.zrdYa K.: 61a1;Y. Tv.anltr•ehn. 1P D1459)L S. ^_a9:. idrm: Testll Pnrcis fU (1959), S. IP-'J. Rnfngh-Hmnnaadi(rr: V r. ~ 78tlIG5.5. US-Patinl (1'J57). idom: \r.759,091 Itrlixh Patont (1956). Vnenren. hl'.: Rlidliand Tc.xtilbrr. 9A (19J]). 5. 1511. Se9d'eI, P.r T,..tilc lnd,rxtries 118 (d95p,. S.1^-G. Alihulik, R.-. Ad,nirt, T.: ACaS?'~ Tcxtinedm. &(1956), S.5"i. Scherproaeii und Schermaschine mraPpnru muerdr.r. unl. ar rrum.r;: a. ~ tiekcicdrr , rn~r ~m-.'tPnatalru•. t Ji~s Frudrliq, Ittalls 11,11.1 g•~nn C:vnpu. l•• } ~.iumr hr•i rirr ',u.llnleuhnllt nus I,hr Insa Obering..(v1. RommerskircHen DieErkenntnisse aus b'ersudlsarbeiteu und For- sdlung:g auf~ dem: Gebich der Textilausrlistungi hahen wbermandie Zwf+dienstation - dem Standder tedl- nologist6enEntu'iiklungund. werh*ollen I'dinweisen aus der Praxisfnlgend - zur Konstmktion der jetzi- gem SYN-TEX-ShcennasdiineCA.3' und des' SYN- TEX:-Shcc•rautomaten CA'.4. gefiihr[.. Hnfolgenden sol- .len die Ifanstruktirnr und ferti-uug;tedurisdsn Eigen- sdrafteu dirscr \iasdiine sowie ihr Aufbau und ibr Einsatz heim ShccrprozeBniilrer hesdtrichcn.werdeTt. Anwendungshereiehb und Typisicrung Es wird nidit Fanzunbekarnrt seiir, daf3 nian audi hente nodr flit das: Scheren anf Ponstrnktionen au- ruckgrcift, dieim Prinzip einem Entwurf von Leonnrdoda t'inci entspredlem.Bevor jedbdi dic• Shccrmasdrine: bekannt nnd einsatzf5hig war; verwen- dete' man fiiF dasAbsdSneiclen ahstahharer Fascrn grofle Sdheren (s. Bil<l. 1). Der VVorsdlfag f:eunrrrdo da Vincis dagegen herulit auf dem „ge- zogenen Sdinitt", wie er vomden.numneltr liingsthe- DK:677.661:T-':67P.057.61$.9:631009!"' t kanntenSpiralmessem der Sdicrzylind'er:r erzeugtwird.. Arn Priazip von cfamals, entwid:cltt um.m das. Jahr. 1500;A hat sidri bis heute michts geahdert. Erst im . Jlahre' 1"59' haute der Engllinder Erereit. WiltshiFe nadi diesenr Vorhild die erste SdrermuscHine. DasSdreren. dicnt't allgemein dazu, die abstehenden Faseren<len von Ceweben;. Gewirken oder Nml- wnven-Artikeln zu entfemen. Viele Jahre reidnen.da- fiir;n entspredlend den. Erfnrdenlussen der TextHiirdu- strie,. Tlascbiuen aus, die in ihrer Konstruktion darauF ahgestimmt St:lren, die 6is6cng liekannten naturlidren Fasern, \Vnlle, Baumwnlle, Seide, Hanf, JNte, Sisal u. a.,zu', sdleren. Demzufolge genilgteun verhalthism;i.- f3ig:langsame Adheitsgeschwindig{:eiteu, eine kleine. Sdierndindertourenzahl,.cin geringer AufSCand an Ab• saugleistung f(ir den F9usenahtransport undd eine' an- spruchslose liiihlung der Sdineidwerkzeuge. Das: \'er- langen nadr ralionelleren Sdiermcthoden und den ver- hesserten Sdiereffekten,, also~ nadi denn sog. Hbddeiistungsmusdlincn, stelltesidi, atlf diesem Sektor der medlanisdren ApPreturarbeiten erst inn jwlgeren Zeit eiin Dtmal die Erfiudungg der sich sdme•1l verbreitenalen CRemiefasern wurdenn gornzneue undl grti6ere Anfor- de•mumgen an die Sthur synthetisdie•rWare oder von 61''.isdrgewelrcnaus Synthetiksund \aturfaser ge'strllt. Sokmmtcn durdii die fortsdrrittlidle Nreiterent.cick- lung, elerr S2hneidfrcuge die. Sdterz.yfinderdrehznhlvn er6ablidr erliiiht werdan, gl'eidlxeitig wurde audi di<•.N':mngesdtwiurligkcit. bedeutendl geste•igcrt. F•in Srui-tc'ros Prnblcmiwar die Verhindernng iiliermafliger IG-wiirmung. dcr starkk hcansprmchteo-. Spiralkanteu dnrdr. Beibung amLrntermesseq die liesonders bet hilhrrrn scntLetisdmu Faserantrile•n ausgel7ist wurdF. Iinuler shirkrr wm'den stddieBlidl auc•It dic• einw'andfreiv mrd pillingfa•ic f:aLl>diur von bisbennurim Si'ngve.rfah- rcn zu. bchnndclnder fcinstrr Svnthctikwam odec vou hlisdtgew•cUeu sowie dic SUmr vumgewiiktrnudim gebdtelen Ccwohcn ffii den Beklcidmtgssektor, wie audt dieSdmr s'on Nnn.wnvcn-Arlikclu gefnrdcrt. Q. Q Dii: nuic6rnemle V'iel.falt neuarliger tesliler Prndukli•. I z. B. der Fasurvurhundstnf(c oder, dar Iradem'crbundk .N3 slofde, rli•IIC an dic Sdremrasdiior-nircrstelfcr hnmurN. . wieder urnc Ant);uLen.. Sicsindl al.su sdrnni durdl dic Q lsnl.vicklung gezwungc•n, immen nadr deni mmlern-4 '. slt•n knuntrukticcn Ilisuugc•uswsudren, unn jcdbr Fmr.itij . derung:an clen Sihereffuktvull und gnnz goredtt wcr.(b den.xn kiinncu. Die 1•:inli'ilung dc•r Sche.rtnasdlinc k:mn cnispruncoudl dert nadalolrcndcn Clicderuqt,' rur(.cnormncn wurdru:. Dauudr kcunt mau Shccnnasdtiiten zmu Sdrrrcn rum. 1-'rudlon aller ArP aus R'ullc turd Cowelicn mi1~ svu- ' Bhetisdrer Fnserbeimisdmng (flillingLc•ir fialdvdmr).
Page 134: fiw68c00
._~ ~.~ 3,100,212 . FIGURE 4 iss liondedl to aa branch nitrogen which~ in turn hassubstituted'ahydrogcn and ether chain.. Each of' the hydrogens bonded tothese nitrogcnss may be fur- ther substituted by a.lower alkyll ether of a methylot . group to form: various alternativo.productsuseful with . different tobaccos for enhancing moisture resistance. . FIGURE5 illusttatesa schematic formula.of dimeth- , yfo1. urea, another valuable moisture resistance agent. • FIGURE.6.is a schematic formula,for formaldehyde. . Among the: advantages of the use of'the.formal'dchyd'c -deri;vat[ves oflthisinventionare firstly the sable:moisture _andalkaline vapor resistance which~ they impart, to tobaccoproducts;.o secondly the relatively neutral burn odor or aroma ofthesmoke when these products arc used in the recommended proportion;, and finally these .. products when tised'in cigarr wrapper and the like.Provioe a particularly acceptablee burn ring or zone: of'charring behind the advancing coal on.the.end of a burning cigar. It is important.to someo-.smokers that the width and color of the burn ring should resemble a corresponding arcaof burning natural tobacco. - • .. ' The tobacco compositEons.of the.present invention also include additionaliconventional additives such: as.humec tants, forr example glycerine and glycols; moisture„ about 20%; dialomaceouseartff, clay and other ash additives; fibers andpulp;d such aspaperputpors tobacco stem pulp to give.mechanical coherence;:; fungicides and.fungistats; coloringagentsanddyes; and caseiag solutionsand' flavors such,asmenthol and aromaticsubstances whictnmaybe used.forexampleinpioa.tobacco. I The tobaccoproducts may be formed by combining finely dividedd tobacco, with, an aqueousmixtures of one or. more water soluble pnlysaccharidess together with any ofthe aboveingredientsar.& amoi'sture:resistanceagent. • If a thickk paste is formed thia may bee suimblyskaped; -for example, into aa film,., or. shred'd and'~ dried completely and.remoistenad man appropriate.moisture content such as15%' or 209u by weight:. Sfoisturecontent of the 4 about 0425 millimeter is mixcd into the solution until a uniformviscous paste.is formed.and this paste is thenn shaped into tobacco products.in the conventional' manner. If, may be convcniently forntedl into a sheet on aflat. 6 staihless.stcellbelt.and.dried at about 100° C. by. impinge-- ment of stcam~ on the under surface off the stecl belt when phosphoric acid has been used. When the.ncid'has nott been used additional heating.g in. an oven is desirable to achieve a maximum moisture resistance. 10Ezample 1'1. . . In another example of thee invention once kilogramof hydroxyethyl. cellulose powder is.dispersedin forty-nihe . kilograms of'water and is miscd.with two kilograms.of a Ig, 10%u aqueouss solution of dimcthylolurea. Dimethyl'ol ,urea isordiharily suppliedd as a solidpowder which.can bee firstforned intoa 10% lty weight aqueous solution by mild heating. Finally two kilograms,of'cigarette.tobacoo dusft aree sifted or blown over the surfaceof at'hina film 200 of the above.liquid material so=that all of llrea tobacco particles.are imbeddedin thee surfaceof the fdm and the film is dried.over steam, The tobacco compositions of Examples I and 11 may bee formed in conventionall ways, such as shredding, ex- 25 truding and the like, into useful tobacco products and may be incorporated in any, proportionn with, . natural whole leaf tobaccosuch as in:the:blend.of'.a.cigarette filler: Wrhat.isclaimedis: 1L AA composition of' matter eomprisingat least 25% 30by weight oflfinelg divided tobacco adhered together by am adhesive composition, said. adhesivee composition eonr prisivg a.mixtureof amajor proportion bgweight of a polysaccharidee and a minor proportion by weight of a moisture resistance agent, said agent being selected from 35the: group consisting off melamine formaldehydes, urea formaldehydesand the lower alkyl ethers of said urea and.mefaminc: fornraldehydes.. 2 A shaped smoking article made.from: the composi- fiaisx.a~~n.Muet~ .rAncPrs~,,.tnq:,.tnon/..,tion.of.claimv 1. It has been found' tlialthe action.of heatt in.dryingtends 40 3'. Reconstimted'tobacco sheet material madeftomthe toaetivate the mo£sturee resistance agent so that once composition oflclaim 1.. the.product has been dried it acn,uires moisture resistance: •' 4. Acompositioq 3pcording too claim 1: in whichttte It may afterward be remoistened.. In general it isdesii- .. agent is the ttimethyl ether of trimethylol mclhmine. able to shape and dcy the.producCpromptly after the.cem- . 5. A composition according to claim 1in whichthe positioni.is compounded to obtain the maximum moisture 455 agent is dimethylot.' urea..resistance: 6. Acompositioa according to claim I which:includes However, i'thasalso been found that inn additionn to reinforcement fibers. heafanddiying the.waterresistance of the.finished'tobacco 7- Amethod of'~tobacco manufacture:whihh comprises: _. manufactureis often achieved relatively more quickly (1) forming an aqueous mixture.of a polysaccharide ad- -when a minerall aeid.catalyst is.alsoadded to.the mixture. 00'hesive and aa moisturee resistance agent;, said agent being seleeted! Fromm the: groupconsistingp off melamineformal- dehydes,e ureaa formaldehydcs and. the lower alkyl' ethers of said urea and melamine formaldchydes;. (21 contnct- ingsaid aqueousmixture with a quantity of finelydi- g5y vided tobacco greater thann one-half the dry weisht of said mixture to form an aqueouss to9accoo composition; and (3)) adjusting tlie moisture contentt of and drying said - composition too about 10% to 50% moisture by weig!:t. . 8,. AA method according to claim 7 in which a mineral g0t acid.is added to said mixturePrior to drying, to reduce Example Ithedurationand heat of drying. 9. A.method accerdfng to~ claim 7 in which phosphoric In a preferred example of this invention one kilogram acid is added! to said mixture prior too drying, toreduce of guar gum.powder is dispersed.d in: forty-niccc kilograms thedination and heat of drying. Theusee of a small't amount of mineral acid makes pos- sible a substantiah reductionn in the duration and heat ofdrying.to, aehievean equal'effect. The acid catalyst is not generally an essentiali ingredient bukis a useful adjunct to theformaldehydewet.strength agentsof this :fnvention. The prefcrred acid for usee with thisinvcn- `tion is a 10%% aqueous solutionn ofphosphoricf acid. Volatilehydtoclorice acidd sotntionsmaybes used'sepa- rately or together with p}iosphoricc acid. References Cited in.rlic fde.of this patent. FOREIGN PATENTS 880,791 France --------------- Jan. 11., 1943 OT6IER REFERENCES is preferably dffuted to the 100 range for use in formulh- "PolynrcricAlatcrials," by C. C. Windingg and. G:.ID. tion: Finally,}wokilograntsof cigar tobacco dusfwhich liiatt, Pagcs 240, 2+51,..242 and 246, published ll961, by has been dry ground topass a screen having openingsoE 75 hlcGrmv-14illl Rook, Co:, NcwYork, New York: of water to form a viscouss solution. To this is added 65'500, grams.of.a 10;'a aqueous phosphoric acid solution. If the phosphoric acid solutiomis.omitteal it is neecssary to dty thee product.at a temperature between I10"C. and 150°C., rather than 100° C:To. this.s mixture is addcd twoo kilogramss of a10°/a clear aqueoussolution of the 70. trimethyl ctherof trimcthylol mcthrnine. ThisProducf is generally available:as an Stt"/eclear aqueous solution and f
Page 135: fiw68c00
:M[aTS'~. [Yol...,T Fi, No. $~2 greement (}vith~respect fl the L. colored grades), ur different methods); n,s, and with the ratios : of the percentages.ofa rades shosv no de8nitee roup~and quality. It is s Pyriki Quality Num- s supposed to be a de- 05' for H3L and'.e nding 3s in this rel'ative order coefficients and ratios a descending order of its or ratios eould be I other gradesOf Type s, but from the results rther iovestigation there are : some incon- p of grades according elative order of~ quali- Iyp6-no1 Coefficients, ~ and C3L respec- ulged in a descending , and ending with 21.9 :ive order of qualities oefficients and' ratios 'ing order of qualities. tedness to Frank B. [ Research Division, leral tobacco grading Ie with tobacco and stions, and guidance lble value. Acknowl- Specialist of the Di- for this investigation ~a foranal'yses.. !ill calculated on a ofl Type II tobacco rnnined:ash,petrOle- ,n, protein, nicotine; 1 19(,°1f PHILLIPS6o IIACOT: COMPOSITIOY OPFLUE-CUHEDTOIDCCCO523'. total reducing substances, reducing sugars, sucrose, dextrin, starch, pectic' substances, pentosans, ceIDhlose, lignin, methoxyl in lignin and ether and ester methoxyl, polyphenols, tannins, oxalie; citric and l'-malic acids, and' resins and waxes: The relationships beteeenn the several eonstituents andd the quality of the grades within a group, as determined by the subjective methods of tobacco jiul'ges; are pointed out. It is shown that the' quality witJua each group of the L colored grades appears to be directly related to the ratio of the percentage of reducing sugars to the sum of the percent- ages of oxalic and citric acids. .. REFEIbEIvCES (1) Melhads of Analgsis„A.O:A.C. 7th.ed. (D950),. (2) BACON', C. W., WENGER„R., and BULLOCE„JL F., U. $1 Dept. Agr• Technical Bu[l'., 1032 (August', 1951). (3) BeaxRAan; G.,,BulCK.Soc:.Chims (Paris) (3), 35, I285-99~.(1~.906).. (4) B4ICx;, R'.. T. J.,. New Zeala:nd J. SciTecAnol:,. 25B, 53:-62 (5943). (5) BnUcsNEn~ . H.,,"Da'e.BiocAcrniedes Tabaks und derTabakberarbeitung,°Berliia, Paul.Parey,1936, (6) CARPENrER„ F. B., N. Ci Agr. Ezpl. Sta., Bull:,. 90a,. Tech. Bull. 5(1893); ibid.,, Bull., 122'. (I1895). (7) CARn>E; bZ:. PI.,, and'. HAYNES, D., Biochem. J.,, 16„ 60-9' (1922). (8) CHAMBERLAIN, E': Ei,, and CLARE;. P. J!.,. New Zealand J. Sei. Tech:nol., 18, 628-37 (1937). (9) DAUais; F:.R.,. Dixore, L..F., and Ghoas, P. M., Ind. Eng. Chem.,,27;, P152-7 (1935). (10) DARSxs, F. R.,, Dlxorv,, L. F., {'S'oLx•;,F. A., and.GROSS, P: M., ibid., 28; 1214- 23~(1986).. (1I) -, ibfd., 29;, 1030-9 (1937): (12) DAaais, E:R., HACKNEY, E. J.,,and GROSS, P. bk, ibid., 39, 163.1-42. (1947). (13) DUNaaR, P'. B.,, and'BacoN, R. F., J..Ind:..Enp. Ct,em., 3, 826-31' (1911). (14) GARNER, N:.N., BACON, C. 1V., and Bowetuc, J. D., JR'.,.Ind. Eng. Chene., 26, 970-4 (1934). (15) GXRTNER, K., DtagyarCAem. Folybirat, 45, 19-30 (1939):., (16) HARVMANx; B G., and HnLIa F.,, This Journal, 13, 99-103 (1930). (17) HARTHANS„ H G., ibid',, 26, 444-62 (1943). (18) HoePraER;. WChsm. Ztg., 56, 991 (1932)'. (119) B[[ssLING, R., "Handbuch der Tabakkunde, des Tabakbaness undder Tabak- fabrikatian irz Kurzer Fassung," Berlin, Paul Parey„ 1925:: (20) RovA:LENEO„ El. I.,, StaCeInst. Tobaccoand Afakhorka Indl, Krasnodar (U:S.S:R.):Biell..,,125y,147-50 (1935).(t2P) &aoeea, E.,.J. Landw., 48',.357-84 (11900);,ibid:, 49,.7-201(]901).. (22) KUnscnxEn, Ii.,.and HANax, A., Z:.. Unlersuch. Lebensm., 59;484-94 (1930), (23). MonR, E. C. J.,,Landw: Vers: Sta., 59, 253'-92(1903). (24)') lllrounE, CI hl., °Report on the Chemistry of American Tobacco,"Tenth Census Report.on the Production of AgricultLrc;,3i Chapter 21„264-80 (1883): (25). IVANn;.D.It.,.and NaaHnuj A. G., Bcocltem. J:,,22,.596-604(1928)'. (26)'h'oRMAN, A.. C., Jl.. Abr. Sai., 23', 210-27 (1.933)... (27); PHILLIPS, 1f.,.T7iis Joevnal;.15, 118-31 (1932).. (28)~ Pnn.uPa, Et.,,andCoss, bI. J.,,J. Agr. Research, 511, 301-19 (1935). (29) PLrLLI'.rs, SI.,, Coss, b•l. J., DAelx, B.. L.,, and'. SaevEnsp Ii., iUid.,59, 319-66 (11939):.. ~-
Page 136: fiw68c00
3',42m,24!1 9 10 for smoking. Sheet material.of widely difYerentl-properties TABLE I may be formed by suitable.variationsine the manner of . . forming. Onemethod.and product comprises flowingthe eample ehcotu Sheet 2 eneeea annnot composite sturry'onto.a movingbelCand applying a layer Part euC -____.._-....--.__ rna1 rlto ti20 tros of droundorftamentedtobacco.tothewet'adtiesive: Mnt.n,re(nnrwnt)r_.-_......... 115 . tzt 12.m u'.~ yl>T g Tenslle;&RAhi! .................. &e.!Nl .eaL2 tarrface..If:desired, there may be.first'.applied tothe.belt '' gemed.•i•e,rrue;kam.+.-------- . .vt. .rn adayer of theaobacco;e followed by a layerof the.binder, Itlungrtl6n (percentH_ ......... 2. 2'~ 2.3 2.01 .0 .74 anrnnrR nate;.,ng.rscaa_.-...... t.sus t.s. 1.7 aod then a top.layer of the tobacco.. VariouaaddlGves ma be included wi[h.h thee round tobacco such as tla-"P+re cetcper p•,rts ertotmtobaceo souas in tne.sh,rrsOneluains 'y g fbb:recopoclms). vorants, plasticizers and aromatic substances. The web r'The.percenvaRenrmmsturewntntneamtheenurernma(weeuv~t,). isultimatel driedand thenn suitably moistened and rolled 10 r The breaklnK StnOngth o[n 10 cm. tv~ratrip which ls I Wch wido; an y y BvanReo110sttipa. up; Stich methods off forming continuous slieetsare ~soAaa td: test stnpcrmsed by.appua.rtlun of a yaoaram weletit rorr kaowngenarallyia the art andd thedetaifs need not 6e , qq,e percent elnngution, at breskogC, on the rostrun test machlno: furtherdescribed.,Representative:ofthisproecdbreisthe rFree.[a,meteu)bnrumsrateotashnxletaststriP;,wah,. apparatus and.methodd disclosed in.U:S. Patent 2;734;51i3. 15 The:reconstituted tobacco, sheets made.pursuant to this. Another method of formingareconstitutedi tobacco ' example were sbreddedlandmade.into:cigarettes. The test. product; with the slurry of' the isolated tobaccoo pactins cigarettes, as,well as'.controls cigarettes.made from stund-as a binder,., eomprisescnixing groundd tobacco thoroughly ard reconstitutedl tobaccoo sheet, were submitted to atherewith into~a.massof dough•like consistency and then smoking panel for subjective testing. Thepanel found eastingthe massin sheet form onto a moving belt..surface 20 that the'.smoke ofthe,cigarettesmadeby the method'd of followed bydryingy and'remoistening~ in accordance:with this invention wassignificantly less harsh thamthe smoke theknown procedures. Representative off this procedbre obtained from thee controll cigarettes. A pleasing vanillin iss thee appamtuss and method disclosed im U.S. Patents odor was found to be transmitted intothe aerosol phase 2;708,175 ant1.2,769,734: Obviously, the reconstituted! to- of thesmoke from the test cigarettes made employing bacco may also be formed by molding orotherr suitable yq reeonstitutedl tobacco made by the present invention. means. A panticularlyy preferred aspect of the present invention Example. 2 comprises employing, as a binder or ditectly,..the, mixture Fifty grams by weight o6 burlleytobacco stems were'of tobacco and tobacco pectins which have.been produced thoroughly washed inn about 5Iiters of cold water for' in situ,withouL any separation steps and without tbe 30 three hours. The washed tobaccostems were then mixed'' necessity forr any additional'l adhesive materials. with 500 grams off water having dissolved therein,.5 grams Thefollowing, exampless are ilfustnativet of sodium carbonate. The resultant mixture, containing .. abouc8% solids,, was'.steamed under atmospheric pressure Example I for 300 minutes and under a pressure of 20p-s:f.g0 for an 3$ additional 20'minutes..At the end of.this time;.the.mix-' ture was allowedlo cool and the liquid w•ass separatedl Tobacco stems (10 parts) were covered with cold water from the solid materials. The solid materialss were treated and.leached for 44 hour. The water wass then decanted in a cider press too recover as much as possible.of thee re- and'..disearded.. A treating solhtion,.made from I part of mainingliquid. The liquid was added,to a previously pre-m sodiumcarbonate dissolved.in 60 parts of water, was 40: pared coagulant bath.which consisted:of ethanol and'.hy- added too the: leached parts. Ztis.mixttue was heatedd at „ dtochloric acid, in an amount to adjust the pH off the its: boiling point for 300 minutes. at atmospheree pressure coagulant toabout 1V:. The: resultingmixtu.re (which had and thes for 20minutes at 20 p.s.i.g. In~ the course of a pH of about 3.0) was alternately'stirred and allowedd this.treatment;,the tobacco pectins were dissolved from tosettleforaperiodoftwobourvAt,theendof.this:timethe tobacco: parts. Thee entire: wet mass (pulp mixture) . the: mixture was strained througtia cloth sieve and the' fil- was dried and ground in aNaringBlendbr sothato it 4Jtrate was discarded leaving,a solid, gel:-likemass;.consist- would passthrough a. 50mesh'0 screen. The resultant ing essentially of pectinaceous materials combined with~ material had gel-like properties and. was thixotropic in approximately 100 parts of liquor. The' yield: of puctinace- natttre• ous materialk.was 15%,. based upon the.dryweight ofl the'. To this.materialiwasadded 2 parts ofglycerin„to serve 50, starting tobacco plantparts:,"Phe:mass was observed to beasa humectant. The pH of'f the resulting mixture was tFiixotropic,.soluble in water at a pH of about 6' and solu-adjuste& to 6.by the addition: of a solution of'10%d, hydto- blc in a.sodium carbonate solution. chlbric' acid.. Onegram of sodium carboxytnethyl celfu- The:tobacco pectins thusisolaled were quite impure and lose (CMC) was added to the mixture,.giving w propoo- had.a color cbaracterislic ofYobacco.'I'he solid!massw.astiutt ofaboutl I part of:CMC to 10 parts of:total solids 85 then redissolved in a sodiunr.carbonate solution.and the im.the mixture. Since it.wasdesired to use this mixture resultant solution- was pouted into an acidified ethanol bath similar to thee con ulant bath used earl- ten Th . s w.am c rc- as a p} . m-ed tobacco binder, the CM C was ploycd . in g order to adjust the spraying qualities. Thee mixture of coagulated solid was obtamedlby,filtration and dried ini an (a)~ treated tobaccoplant parts, including, the liberated oven at 105° C. The dried tobacco pectins were inn the tobacco pectins, (b)) the sodium carboxymethyl cellulose 00 form off an opaque, substantiallycolorless sheet. Nhen and (c) thce glycerin had an viscosity which was suitablb the sheet'was pulverized, a white powder was obtained forsprayapplicationoflthe,nrixture.as:abihdingmaterial having.adistinct.andpleasingodorsimilartovanillin: forr reconstituted tobacco. This materiulwas sprayed'.. on Ten grams of the dried toliaccoo peetins prepared above top of an undercoatingg of tobacco dust,, of'an 80mesh were swelledd in 100 o mi.. of cold water. The mixture was CS5 themn added toa slircry eonsisting.of 8.5 grams of refined size,.wflich had been dusted on a.wet bdt. AnoCher coat kraft pulp dispersed im 2000 nrl.. of water. The resultSnt of the mbaccoo dust wast laid onn topp of the binder. In mixlure wasa homogenized'd in a1Variitg blendor. Four d generall an apparatus similar to thatt described in U.S. grams of gtycerimwerethcn addwf.to tlie mixture to serve ~ Patent 2;734,513 was employed. As in said patent, the ass a huntectanL The resulting mixture was cast inloo a~ reconstitutedd sheett wasdne&andl was lhcm humidfiedd to 70, binder film, using, a. Cardiner casting knife.set too produce ~ Otedesired moistnre conlent..The control in.Table:I was a sheet.liaving a wct thickness of'50 mils. The physical 44 nurd'e in a conventional: manner,, usinga relafivelylarge properties of'this shcct'.,,afler drying, were tested'and were :b amount of CMC: in proportion to thee pulped washed found compnrableto the.properties.oftonvcntional binder •°,Q tobaccostems. The Mstdata as obscrved are reeordedlin films. The physical test' data arec given in Table II. The W Tablu II ryscoutroll material was made by mixingg pullp,, which had
Page 137: fiw68c00
510 ASSOCIATION OF OFFICIAL ACRICOLTURAL. CILBEfISTS ('ijrOf: ,$6iNo:. 2 added to.theBltrate. The filtrate,wasconcentrated on the steam bath to a volame of 100 ml'y 100 ml ofconcentratedhydkoehloric acid was added„and the solution was boiled nnder a re0ux condenser Eor 2hours.. The solution was then coalcd„ neutralized with a strong sodium~hydraxide solutiony cleared with a saturated neutralllead acetatee solution, dcleaded witL solid sodiunrm oxafatei, and the: reducing, sugars (calculatedl as glucose) were-determined by the Bertrand (3) method.. The per- centage of glucose:was.mnltipliedlby.0l01to.obtain the percentage of dextrin. Starch.-The residue from the dbxtrinextraotion.was.dried at. I00°0]., weighed„ and the starchh was determined by the tnka,diastase method following thee pro- cedure.of Ward (44). Beducingsugars (calculhted.as glucose)) were determined by the method of Bertrand (3)L Theweight.of glucose found, when multiglied'by D:Dy,. gave Uhe weight of st'archftom which the percentage of starch.in the moie- ture-fhec tobacco: was ealculated~ Total Pecfic Subs6ances~-The percentage of pectic substances was determined by the ammonium oxalate.method of Naaji and Norman. (25)) as modified slightly bp BrQckner (5, p. 347). The pectiesmbstances were converted into caleiumpectate by the.. Carrfi6 and Haynes, (7)) method, and reported in Table 11 as percent'agee of caloium.peatate. Penlosans. The pectiec subxtances were first removed by extraction witha hot 0:5% ammoniumoxalate solution as above and thoe percentage.lose in weight due to this extraction was determined. The furfural in the.residual material was determined bythe.A.O:A.C:.method.(1y p.350: developed.by Tollens and his; coworkers, par- ticularl+y Ktober (21)). Tiie result was calculated as,pereontage of pentosans.ia the original.unextracted tobacco. Cellulose.-Percentage.af cellhlose.was.determined by the method ofK4rschner and BIanak. (22)4 . Lignin;-The sample (equivalent to 7.5.g ofmmoisture-ftee tobaeco) was extracted in a Soxhlet extraction apparatus first far8 hours with.D5%ethanol, and then for 4! hours with~ a 1:2 aleohol-benzene solutfion.. Thee driedd extractedd material, mixed with 750 mY off a, 1%o,hydrochloric acid solution andd a few drops of capryl..alcohal was boiled under a reRux~x condenser for.3. hours. I!twasithem filtered on.a weighed frittedd glasscrucible,s washed withwaterh until the washing was free of acid, dried for 4 houra.in an oven at100°C:, weighed, and the combinedlloss due t'o,thc succes- sive extractiona was aalculated.. Thee dried and extracted, material was ground, re- dried'.at 100°C..for 2hoursand asample (0.5 to 0.8 gram) was transferred toa5flml Erlenmeyerflask.provided'.with a one-hole rubberetopper through which paased.a glase.rod 12 am.:l'ong:with.a flattened end. (The.glass,rod was lubricated wit'h~a drop of glycerol so that it moved.easily through~ the hole in the rubberstopper)..To the sample, 72% sulfuric acid, (previously cooled to 5"C.) was ad;dedln the proportion of'5 ml of..acid for every0.1 gofg sample:.The reaction mixture was stirredwiththe glass rod, the Erlenmeyer flaskwasstoppered.,,and.allowed to.stand in.the refriger- ator (atca 5°C:)for 24 hours with occasional stirring. The reaction.mixture was then transferred to a.one liter. Erlenmeyer flask, suffiaicnt distilled water was added to make a 5% sulfuric acid solution, a, boiling tube about 18 cm long was putin tho flask;,and the mizture was boiled undera rcflux.condenser for 2 hours. After cooling to,room temp., the crude lignimwas.filtered thr,oughaweighedl sintered glass.eruciblc, washed with water untillfree of acid,, dried at 100°C. for4 hours, and weighed. The crudelignin.was ashed andlthe weight of ash was determined. The result was cal~ culated ae.percentageof'ash-free lignin.in, the original moiature and sand-free sam- ple. Afakhuxqf:-Thee percentage of: methosyl was determined by the Kinpal and Buhn modification ofthe.Zcisel method'. (27). In some casea:i!t' was also determined by the.semi'-miero volumetric method oAVicbuck and Sahwappach (43). The figures iu.Table 1 underthe.heading "nlethoxyi in Tobacco (Total)f" represent the total f9(1$1 PHILLIPS percentages of inet combisations: The.pereentage ~ as.follows: the toba 500 mll of 0.5% hyd condenser. The mist washed' withdistille 100°C.. to constant i acid was~calculateds mined by the.Kirpal cal'culated on the ba in Tablc I underthe The percentage o ether methoxylftom Polgphenala.-Th and the percentage o following..the procedu by the . method of B reducing substances gavee the.percentage ~ Tannins.-Thep method.,, following Ghi OxalioAeid.=-Tfu was thoroughly mix, acid,, and 20g.of'pon thimble, andextraote The.oxalic aci11 ia th extractions with wate precipitated as calciur thus obtained was di water and 5 mI11:.I H solution, andthem aei of 10% calcium chlnri, allowed to stand over, 050°C. From the weig CllriaAcid:-The , tive extraction.with et water, following thepe determined by the penand Hillig(10), Laevo•Dfalie. Aeid: tura,free tobacco) wen with water as above:.1 uteamm bath until the e aiiquot was transferred added,, and the solution qun of. a 1Y6'%'o sodium I giacinl.acetic acid and c 6retgte (or sufliGient to p"'iodi,all;y imtlhe coun "s possible:,Activated c QI+r cemi eutfu e said eplutim
Page 138: fiw68c00
3,420,2411 . 3' 4 AltHoughpectins have long', been known as constituents of ®lanft tissue, it Hass beem found extremely diificultt to oooca-ercrcnnti OtGOOOIIo'A separate pectins from the remainder of p1Snt compositions '`C-O ~~=C an& to obtain them as homogeneous compositions. Th A IIe recovery of' pectiasfrom tobacco is even more dlfliculR ' 5 -O_C`A A~a-C-C;A H/C-O-+ zR a than the recovery of pectins from other'plants. A A H In accordance with thepresent.ihvention„tobacco parts ~-I I~- Treanha reocenT. I C' CI Mthbbventbn zre fionded together by tobacco pectins which are espe- O cially prepared by'a novel process which yields these pec- ptt OA CooCiG tinss in a.forma in: which.they cambe employed as binder L0cet:CItiat esCTAitsi . _ materials..Ourprocess for preparing tobacco pectins com- , . prises first reacting tobacco~parts„prefembly'in a.form.in e surface area with which the resen[a lan an a ueous g ,. . q y p solution'of a.non-toxic reagent which is capable oflreacting "1 with and' destroying the cafcium'and magnesium cross- _o-c-A A-C:-o-C-& A-C'-o- + a-Ca-liuks in thee pectinaceous substances which naturallyy oc- A A A Product haotna ta.rerr cur in tobacco. After the calcium and magnesium cross- 1I / est.qneencentreuon links ara destroyed;.the tobacco pectins are.liberated and ~-~ C.-o thnntheeatclumpetate I .. . made available for use: as a binder. The tobaceoo pcMins 2U~ b'A OA ti:OOCA, N the treattne eolutbo. are then dissolvedlor dispersed imsolution„or are at least PECTIC estnoa sufficiently released from the interstices off thetobacoo sor,unts PsCTATSE mass so thar they' form a coating on the surfacoe thereof. In one embodimenf.of thias invention, the reagent, which Tobacco~ pectins whicHaredissolved orr dispersedl in the can be;, andd preferablyis,y in aqueous solution, acts by treating.solutions„are thereafter precipitated or deposited 25i forming~ a precipitate with the calcium or magnesium, in from ttiesolution, so that they become available for use which case,. it can bee a water-soluble monovalent metal as.a binder'material. In.this way, thee tobacco parts can salt ofi the formula M„X whercim M iss a monovalenn in- be'.iionded togetherr bya.binder material which is made of -organicc cation, n. is an integer having,at value' of.1., 2, or 3ingredients that are closely related tosheo nalurally oc- and XX is am anion which may be monovalentt or poly- 30'g valent„ such.h thatt the calcium salt of the formula CaeXe, curring. ingredients of'[66acco. The bonding can be'e ac- isessentiallyinsoluble in the.treating solution and p and qeomplished withourtheneed.for thepurification.of.t8e are'e integers; corresponding, to the functionality of' X.tobacco pectins, inasmuch, . as anymaterials'y which' are Monovalent cations which are effective include the alkali', present arec clusely related to t5ematerialse which are metalssuchas-sodium,s potassium and lialiium,, and also normally present in tobacco and,., thus, doo not addd any 35'5 include'such monovalent cations's as ammonium4 andd sub- undesir•ed qualitiesdo the tobacco.. - stituted ammoniunrm ions(NRy)+, where R=aryl or alkyl- The.tobacco parts which can tieemployed.in the pres- The anion portion, of the moleculb may be' COs ; P04-,. , HsPO. ,. andd the like.. For example, the com-CnCi iavenlion including tobacco ]taves„ stems: and'~ s[aIks, HPOq poundl MnX could be'e sodium carbonate, NayCQt, slnce' orr a mixturee of these, whether inn sheet;; fiake; particulate 49sodiumis a monovalent inorganic catiun and calcium car-or otherr form. Ptefenably,, the partss are ground',, cut or bonate is essential7y 3aater insoluble. Additional represen-otherwiseprepared ina.form which presents.a large sur- tative examples oflprecipitatibg agents.are the orthophos-face area. The ponionsmf the.plant comprising the stems phates, metaphosphates and carbonates of sodium, potas- ormidtibs, and often referredto~as tobaccopetioles; are sium, lithium and ammonium. In.lhecaseof the ortho- lhe'e preferred. smrting'g materials. Tobacco~ stalkscontain 45nhosphates,5 the aniom portion ofthe: moleoulee maybey ex- lesser amounts of pectinaceous materials 7iufcan alsobc either PO,-, HPO, ,. or H3POc : Specifically, for ex- ample; whenammonium orthophosphate isused„the pre- employed. cipitate is calcium and/orr magnesium ammonium phos- _In the.firststep,of the process oflourinvention, tobacco phate..The pH off this reaction shouldl be between about pectins~ areliberatede from peclinaceous materials in 50 i5.8and 10 and the temperature may be as high as400P'C:. tobacco by reacting the pectinaceous~ materials with.h a but.should,.preferably,.be between about 25° C. and about reagent which; underr the conditions of thee reaction,., is 135° C:. for a period of front about 1' minute too about 24reactive.with ~ the calcium (and/ocmagnesium) contained honrs. Pieferred precipitating agents.whieh may beemr ployed'd arc the alkalii metal. carbonates, for example, so- in, them to form acompound.or product having.a lower 55 dium carbonatee and potassiumm carbonate. Particularly calciumion;: and„ in the case of; magnesium,, magnesium preferred preeipitating,agentswliiich may be employed aree ion, concentration.s im thee treating solution thann the the alkali metal. phosphates and, most particularly;, thee naturally occurring calcium(or magnesium)I pcctate. alkali metali orthophosphates andl the' ammonium ortho- This reagenrmay, for convenicnce;.behereiuaftor referred phosphates, such as the ammonium phosphates and am- to as a',"¢ross-link.destroying.reagent." 60 moniunt orthophosphate, sodium, orthophosphate, potas- The reaction may be generally represented 6y Equa- sium orthophosphate,.sodium dihydrogen orthophosphate,, tion I, which illustrates.the reaction.of.one t ammoniuun dihydrogcn ortliophosphate, potassium dihyypeoftobacco dtogen orthophosphate, diammoniumn monohydrogen or- protopeclitn (a: calcium salt of aa polymer of' galaoturonic thnphosphate,, disodium monohydrogen onthophosphate acid), wherein calcium cross-links urepresent with the 65 and dtpotassium.monohydrogcm..orthophosphate, reagent. of tlie'.presente invention,.In the equationy R may In a second cmbodiment, the cross-linkk destroying re- 0' behydrogen, in which~ case lhee product is' pectic acid, agent acts by sequestering thoe calcium or magnesium, ~'or R may bee a, monovalent inorganic oation„ such as thercbyremoving thecalcinm or magnesium, . atoms by'41 sodium, po[assiumor ammoniumy in which case the prod- formingg a complex therewith. Suitable reagents of thisN' uct is a soluble pectatc,. 70 type includbb any sequestering agent which' will. form a, ~ , complex or chelate with the calciumand/or magnesium, ~ therebyremnving', the caloiunu and/or magnesium and ~ 2 nyeourrnl'.rntl'nn wa mrnn ronerntrutlnn or netivtt,N' nu making thenr unavailable for recroas-IinY.ing with, tlto-sot fortlilm tu,.~stone, ^Trxt6not orr~:r..ti,d ea~•ud..try;'9a1 pectin. Illustrative ofi such,sequestcring agents are ethyl-]:intwn;.p.uct,D:,P,Nuntnu:d..Company,ntc., 75 ene-diaminc•Octraacctic.acidandsimihtrmminoacids,alkali. COOn' CII OSL COo
Page 139: fiw68c00
United States Patent Office 3,1'.06,212 Patented Oct. 8, 1'963' 1 2 - tureof alll of the foregoing smoking producta as well as " 3,106,212 other shaped articles such as pipe cartridges and the like. Flore, Farr,teld, Conn.,assignors to.AmersanLLlaeh.ne. 5 ful products. It is>alsos known that ih: many instances"-&Foundry Company, a corporation o9'Newdersey . ~ d tb f th d~ b tfie dd'tiont'tion u rov a Howard Marttn Halter,, Norwvk„ and I:oseple V:ncent, Iplyyaccharidesands finely divided' tobacco tb~ form. use- ~~ ~ -~ TQIBACCO MANUFACTURE ~ It.is known in-tFie priorr art to combine water soluble~ r er tmp e . y ~ . Filed May.21, 1962, : Ser. No. 19G~1fi8: ese pro uc ss eann e l f i ki i l h l yoxa of minor amounts o cross-l n ng mater a sue as g 9 Clafats. (Cl. 131-17). ..t and.dialdehyde.starch or other dialdehyde materials ih- t without significant adverse effect upon the color,, aroma dehyde units per mclamine unit and the substitution.n of or ashof the useful.product. I -from one to four forrnaldehyde units.per ureaunit will re- Watersoluble: polysacchnridederivatiroes have becomee sulf in useful wett strength materials. A preferred wet established im the art as particularly usefol film formingg strength material for usee with thee abovee polysaccharides . adhesives for the manufacture of tobaccoo productsfror.r. 45 , is the trimethytetL•err of trimethylot melaminr. Anothcr ,<£meiy divided.tobacco, In general thesepolysaccharides'e material of this type whichh iss alsoo highly useful is di'. • inclnde cellulose etherss suchas sodiumcarboxyntethyl'm methyloCurca. These moisture resistance agcntss are iar '. cellulose;., hydroxyetbyl cellulose and ethylliydroxyethyll eluded indhe tobacco product on the basis of'the polysae- .' cellulose;,galactomanan materiall such as.locust'.bean gum charide gum content and.iit general range fromm about 5% ",. and.guar,and polyuronidbs such as pectins and alginates. 600 to aliout.56%' by weightof the.gumande preferablyabuut .._..According.to the present ittventionn polysacchar.dt gums; one-fourth of the gum weight.. The formaldehyde deniv- used eitherindividuallyoradmixcdwith.one.anotherin ativesofthisinventionmaybeusedieither.mixedtogethon, ~°ar.yproportion„ comprise abmi6 1%. to30% of the fin- separately„ormixed wilh.convtntional!dial8ehyde cress- )shedd tobacco product and preferably between 5% and linking agentssuch as glyoxal: and dfaldehydestarch- The 15% byweight:. 55proportions of mixing the materialswi& one.anotbcr or The tobaccoused in the manufactnre.of the productss with.the dialdehyde materialkare determinedlbytlte use of the present invention isprcferablydrygrotmd and will to tvfiicliUic tobaccoo productis putl and by the character pass through screens having mesh openingsb.tween about and'd species of the particular adhesive and tobacco used. 0.8millimetersand.about0.03millimeters or.less, Wet When a.laigh.degreea ofmoisturc resistance is desircd a ground tobacco, suchaseolloidalh tobacco or beaten to-eo relativcly larger proportion of formaldehyde material baccofibers, may alsoo be usedseparaMly or together with should bee added to the polysaucharide.. Generally;, more the dry ground tobacco.. It is preferable to use at.least.a moisturee resistancemmerial may be added to. mouthpicce major proportion of dry ground tobacco which may ea, reinforcement tape sincee great moisture: resistance with Q preparedd in aa hammer mill„ for example. When rcin-tittle- concern: for burn aroma is required. ~ forcing tape, to~ be used'.d att the mouthpiece of' cy,ars an3. ObIn thc drawing:: N cigarettes, is made according.to this invention it~ sbould, FIGURE 1 showsa.schcmatic formula for urea. contain atlcast 25%u by wciglit.oftobacco.and preferably FIGU:2E 2 shows a schematic formula forr mel'amino.Q above 40%a. In most otherr tobacco products mcluding. FIGUftE 3 shosvs.a schematic formul'a for trimethylnl~h chewingg tobacco, pipe tobacco, cigarettee and cigarfdiSr mclamina., . ahreads, ci~gar binder and. wrapper,.. the tobacco, should! 70FIGURE 4 shows aschcmatic formula for the trbA constitutee a majorr proportion by weigllt ofthe finished: methyl elhcrof triincthylol melamine,. a preferred form manufactvre... 'Iftiss iitvcnt:on is useful in thoe manufac- of the invention. Each of the carbonss on theringe of exposed too the action of'salivaandi..various treatment so- EO conditionsof insufficient ventilationn of the individual sur- lutionsused in the. application of flavors andl thelike: facesof the smoking.products: It is possiblee to mitigate Some off the waterr insoluble: products;, whilee generally some ofl thesew undesirable effects by refrigeration and satisfactory„ particularly wben first manufactured, have ventilation usedi either separately or together bu£ tiereto> tended. under some storage conditions tolosa much of foreno wet strengtli..ingredient.for combination with wa- their waterinsolubility. 25' ter soluble polysaccharidashas been.availablewhicfi.effec- Ifn isans objecGt of: this: invention: to provide water re- tively resists tNislossof moisture resistance with all.kinds sistanttobacco.products made firom~finelydivided tobaeco~ of tobacco. Ifis to be noted that some kinds of natural .and.adhesivematerial. Iea[tobacco havee generally moree pronounced adverse TlI is an object off thisinvention to providee water rer storage effects upon moistareresutancee of dialdebyde sistant tobacco.produetso which.retain theiF resistance to30 csoss-linked polysaccharides than do other species of to. water even whenstomd for a long period of time. bacco. It is also an object of this invention too provide a meth. 'According too the present invention itt hasbeens found ad ofi manufacturing tobaecoo productss whiclih include a that minoramountsr of formaldehyde derivatives of prti- long-term.stable moisture.resisting.ingredient: maryand secondaryamines and priinary and secondary » These and otherobjccts of the invention aree aehie-vod 35' amides, such as.mefamine formaldehyd'ess and urea form- by combiningg finely divided tobacco withh water soluble aldebydess and particularly their lower alkyl ethers. such polysacchanide adhesives and one or more wet stren3th. as methyl and ethyt ethers, will providee a moisture re- agents which whenn used in minor amounts are effective sistance agent' of 85rperior quality for use with tobacco: to control the moisture resistance of the finished product 401 In particular the substitution of from one too six.formaf- "`the water soluble tobacco products, havee suffered when= maniaa and related products when tobacco is stored'underd cludee sheets, shreds and other shaped articles. In gen- 15 the £ermentation off somee kindss of tobacco the water re- eral!these products have either.had!A.verysubstantial re-sistance of the: finished product may eventually be lost sistance to:disintegrationin t1lepresenceof moi;ture or either to a large extent or may disappear. eonpletety. elsee have had hardly any suchh resistance. Effectiuely;, This etlect has bcenn aseribed'd to the generation of, ~ am- .mereial importance. Productshaves been. made: which in-agentsarestored together under conditions which support. " vided tobacco and adhesives has assumed substantiat.com-tobacco and tobaccoo products including thesewet strengthh In recent years tobaccomanufaeture from finely dl- ' products. However it has.been found that when nanual'. . . 17rjs invention relatestos thee manufacture of tobacco cluding dialdehydepolysaecharides.. For many purposee products and nwre partieutarlytb tobacco products.made 10 dialdehyde cross-linkedi polysaccharides together with, - ftomfinelydivided tobacco~and adhesive material., finely divided tobacco form very satisfactory smoking
Page 140: fiw68c00
ak h_ydroly, r th silica gel of pH 8;m :. applied tu. zr ~ 'tding.. .vatcr in the rumee aphtholsul:- 06 minutes~. long other tihin.layer ugars.umre .was theree amnose in s chroma- m Turkish :hanoi ex- d'also..the nsiderable s{Bright, ty of the ~1esbeing On the Isylvania, miformly s, which acidified r. da in lined on negative n deter- in re+ ied con- .rtypes,r greatest On the 'im . was . : low of wt' uni- 1157). Phy of wterial c acid,, oliably as not nearly raphic y was r stenu hards lvieco raphy ms°•. Table II. - . ~ Stem, Types .. Bhight~ ~ Burley ...: Maryland. Turkish Pennsylvania. PuertoRfcan German Java-Brazil Figure 2. 71Bin-Ltiyer cAronudokram oD80% methanol!washings of tubaeco stems 80% Ivtetha . Tobacco nol Extra~ctables in Sthms- Extractables, . % ~ -Fnk~~.Sugars Table Ili. Calcium Content of Tobacco: Stems. ' ~ . Extractable Totall Ratioof' -~ 42 .8 ,- - . Largeamounts~.ofsucrose; Calcium,. Cakinm Extractables( ' 28'.2 fructose, and'glucose Trace of fructose and Stem Total . Bright 1.00~. ' 2.02~ 0.48 ' 22' 1 Tt Burley 1~~.70'~ 292 4 58 . . 36 8 aceof sucrose, fructose;, and glucose La Maryland. Turkish ~ 0:.96~ 1 88 2.56~ 3 04 . 0.38 0 61 . . rge amounts of sucrase;. fructose andlglucose: Pennsylvania . 2.22 ~ . 3.90 . 0.57 . ]f1 7 , T Puerto Rican 1 18 2 14 0 55 . , 19.5~ ~ ~ raceufsucnose,Jructose, and glucose None~ ~ . German Java-Brazill . 2.26 . 4.30 2.80 . 0.53 0.56 ~~IS.6 ~ ~ Trace offructose~ ~ Havana seed leaf :. 1'.04 4.20 0.25 ,211.8 ~Trace~.of sucrose, fructose~,. ~and'glucose W V W ' '4 W Q ~J1 a 7 . -.-a ;., v~ ~ . ... __ .;:3 e3 ~ .~14 1s 16 Figure 3. Cartbiydtotecumpusition of fractions C, N, and E.frum Penm sylvmiia stems. VOL. 115, . NO, 6, NOVY>DEC: 1967 1059~ F
Page 141: fiw68c00
- 514 ASSOCIATION OF'OFFICIAL.AOHICULTUnAL. CnEMISTS [Vot. 86, No. 2 I I grades, but also from a~ consideration of other data. B3'It, BSGR'., and 115R, although usedi to a vcry limited ext,ent.in the manufacture of cigarettes, are essentially non-cigarette tobaccos, whereas the L colored grades listediin Table l are alt eigarette.tobaecoa Nitrogerwus Constituents.--Consid'erable variation was found in the total.nitrogen, protein, and nicotine content of the several grades of tobacco examined. The percentages of total nitrogen ranged from 1'.92 for C3L to~ 3:14 for B5GR. Similarly, the percentages of proteins ranged from 5:53 for C3L to 7.97 for B5GR. It may be noted that C3L, which had the llonvest percentage of total nitrogen„ all;o had the lowest percentage of protein, and B5GR, which had the highest' percentage of tot'alI nitrogen, also had the highest percentage of protein. In general,, those tobacco grades having a high percentage of total nitrogen.al'so had.a high percentage of proteins.. Both the percent'ages of nitrogen and of protein generally varie& inversely with quality, thatl is, the grades of fifth quality of each group contained greater percentages of these constituents than the corresponding;thiid quality of'tihe1 group. .. T'hee only exception was B5L, which.contained slightly lower percentages of nitrogen and protP.in than B3L. I The percentagesofs nicotinee ranged from 1.52 for P5L to~ 4.75 for. B3R, which is approximatel'y a three-fold variation. It is rather signi$cant that the darker-colored, heavier-bodied tobaccos; namely, B3R, B5GR, and H5R„ contained much. greater percentages of nicotine, than didi the light- bodied tobaccos of lighter shades of color. Attention is ealled'to the fact that the R colored tobaccos of'the B and H groups are also quite different in chemical composition from the L eolored.tobaceos of these groups with respect to the content of the various nitrogenous constituents.. B3I1,, B5GR, and H5R were all found too contain much greater pereentages of '. nitrogen,, proteiny. and' nicotine than the . L colored's gradesof these groups. Total Reduci.ng. SuSstances and Su®ara. The percentages of total reducing,substances, which consist largely of reducing sugars in addition to a relatively small amount of other compounds.and complexes'eapable of reducing Rhling's solution or a similar alkaline copper solution,,ranged from 3.6 for P5L to 26.1 for H3L,, which is approximately a sevenfold variatiom In the case of the: percentages of reducing sugars there was even a greater variation, ranging from 2:2! for P5L to 22.9 for H3L, or approxi- mately a tenfold' variation. It may be noted that those grades which had high percentages of redueing sugars, such as.B3L, BSL, H3I;, HSL, and C3L„ had relatively smaller percentages of: total nitrogen and proteinsas compared with the grades CSL, X3L, X5L, P5L, B3R, B5GId:,, and! H51t. Shmuk (36) who worke& with Russian cigarette types, and Darkis, et'at. (9, 10, 11, 12), in connection with their studies of Americann fluereured and Turkish. tobaccos, noted a similar relationship between the percent- agesof sugars and proteins.. The data in Table 1. show that the percentages' of'reducingsugars vary i divectly in each gr plb; the percentaa were 21.51 22:9; 2 fifth quality of th 18.5, 20.7„ 14.5;, ar. X5L, the percenfz were found to ha corresponding L c The percentage in H5R to 1.9 in 1 After removal f storedd in a, pack ] tobacco undergoes ger, and Bullock (t the tobacco, inver: ing increase in tl why the percentag, Dextrin, Starch, 11 shows that the all under one per e constituent' amen- The pementage: to 4.3 in C3L. In € sugars also contain With the,except a somewhat lower third quality. Thc than the correspor The analytical r substances.determ protopectin, peeti- ditferences in the pp grades were not gr. in.n every case a e: grade of third qua: It may be recalle of pent'osane were . of ammonium.oxa pectic substances cent hydrochloric Ivhen the residual distilled with 12'pc I iemicellulbses„ tha. these carbohydrat, . The data, in all e
Page 142: fiw68c00
-rIMISTS [Vol. 86, No. 2 lbacco„ Typr.11 (1948 orop)• Na21N gr et $.ee9t 3.84 5.64 6:09 rnLOrlel rmMe ye9.39 9:08 E:36 1.99 per unr 24.6 22.0 26.1 8t.5 ee4VCl.o eunmu Pno.n- perrnl 21.5 tes 22:9 20:7 5.53 a:ar 23.6 20;/ 6.25 a:22 15.3 ' 14.5 /.26 LID 13.9 11.1 6.98 2.14 6.3'. 8.1 7.27 1.M 9.8 679 4.75 13.4 n.3 7.97 a.e'. 10.9 7.00 301. 0.2 711 xtt9arrt X.18e- fM QILRLUee LILa1N rna clpxu cT mne 8:0 °s.as a is 9.a 2.03 aza 8.2 2.30 e,9 2.0101 8.67 8!3 2'.65 2.0 1c:3 3:62 2.13 108 e:ae, 2.34 ll-3 4137 E.17 13.8 4118 3.27 i 10 3 ale7 2.77 . 9:3 3110 v.u 11.5 4.76 2.96 i ema6 .nG I-rALre ACID /pplNO Ase w.xee pH MrvN 9.53 anr yereme 8:35 yr ue~ 5:1 9.66 1-4 9.34 4:9. 0.46 2.8 9:59 5:2' 0:66 9:4s 2.5 2.s 8,92 9;6a I 6:ai. 0.85 ' 3.5 1ai27 e,a I135 4.8 10:47 2.65 6.2 1a05 5.P5' 3.90 7.0 ]0.07 5.5 Lll 3.8 tc.z3 5.9 e.78 1.0 9.79 4.6 0.75 ].3' 11.07 4.9 1.75r$1I PHILLIPS Ac'. BACOT: COMPOSITION OF FLUE-CUBED TOBACCO 509 weight! was determined and calculated on thei basis of; the: original. unexta'aeted . tobacco, Akohol. Eifractives.-The residuefrom thee ether extraction was similarly ex. traated for.8'.hours with 95:per cent ethanol, and the percentage loss in.weight was calsulated on thebasie of'the original unextracted tobacco. Tofal'.Nilrogcn.-The percentage:of.total nitrogemwas.determined by'theoffrcial Kjeldalil-Wilforth.Guuning method,, modified tio.includenitrate nitrogen (1,.p: 13). The final digestion with mercurio oxide,, potassium sulfate, and sulfuric acid was toatinued for 4 hours. Protein.-The method:ofdetermising,percentage of protein was.essentially that' of'Mohr (23). Tlie.analysis was~.carried out asfollowe:.s the eampla(equivalent to. 2g of moisture-free material) was boiled for 10miputeswith.75 nil of'0.5%:acetic acid solution, the mixture was filtered,and the residue wass washedl with: a hot 0.5% acetic acid solution until the filtrate was colorloss (ahout.4Z ml). The nitrogen im the residuewasdbtermined~ by the Kjeldahl-I'Vilfortlh-Ci.unning method (1, p. 13) with mercuric oxide ass catalyst, and the percentage of nit'rogeu found wass mmltipliedd bytheconvenLional factor, 6:25'to givethe percentage of protein. Nicotina-Niootine was deteemined by the official A.O~.A.C; method'.(l,.p: 69). Iu 6ome.cases, determinations were also made by bhe: method of Chamberlain and Clark (8). The reeults.obtained.by these two methods did not varymaterially. Total:Reducing.Substancets.-A.modification of the Yyriki (31) method wasused for the extraction of the total reducing substances: the sample: (equivalent to:5 g of moisture-free tobacco);,0.6g.of CaCO:, and.200mlbot distilled water were.placed in a 250 mli volumetrioc flask (ealibratedd to correct forr volume occupied by the sample and the CaCOi)'and.digested on thesteam bath for one-halflhour: The flaekk was shaken.manually frnm time to time. The flask'and contents were then cooledl to:room temperature, made up to.volume. with.distilled water, mixed, and fdtered'... The.total reducing.g substances in.an aliquot' of the filltiate were determined by tliee metliod.of Bertrand (3) and calculated as.glucose. Reducing Sugars.-The sample. (equivalent t'm 5 g of moisture-freetobacco) was ! extracted for 16hours'with 80 %:ethanol'.in a.SoxhlEtextraction apparatus;.thealcoholioextract waatransferred to.a 250 ml volumetric flask and made up to vol4 me with:801%ethanoh One hundred ml of! the alcoholic extract was transferred to a, 250 ml' beaker, the al6ohol was evaporated offonff the steam bath and tfioresiduall aqueous solutionn was transferred to a 200 mi volumetricc flask. The beakerwas washed with several.suceessive partionsof hot water (about 80°Cl) and the washinges were added to the volumetric.flask. The solution wascoolhd to room: temperat!ure;, cleared' with a saturated neutral lead sabrtionl and deleaded with solid sodium oxalate aadeseribedl in. Methods of Analysis. (I, p,. 108). The reducing sugars im this solution.(A):were dotermiucd'bythe Munson and Walkermeth;od (1,,p.506). Sucrose.-Fifty m11oB solution. (A)) was transferredl to a I00'ml. volumetric flask and ihverted withh hydrochloric acid at room tcmperature;, followingg the procedure given in~ ]lfrthods of' A nalpsisfor the determination of: sucrose im grain and'stoekfeed. (1, p. 348). The reducing sugars~ afterinversion; were determined.as above and calculated as invert sugar. The diRerencebetween the percentage of invert.sugarbefore inversion and the percentage of'invert sugar after inversion, when multiplied by'0.95; gavetiie:percentageof sucrose in the sample. Uextrin.-Thetobacco remaisingg after extraction of the. sugars with 80% ethanol~was dried'at 100°C. to constant weight.and the l'oss ine weight duo to.this extraction was calaulatedi To 2 g of dry and! cxtracted tobacco;.500' ml ofcold dis• tilledl water was added;.andithe mixturee was allowed to digest at room temperature for 24 hours. It was freqnently sbaken.in tlie.course of'thie digcstion;, and was tlun filtered;: the residuall mat'erialwas washed with cold water, andd the washiugsnvere
Page 143: fiw68c00
!eo a al tic as e- lel !, ed' I m. !.m mld to, he he s- he . A )5 all in b• g a- C ured, as anhydrogalacturonic ucid, showed aa greater eoncentration in the miidribb tham in the'lamina.. Total pectic' substances in tobacco were reported by Pyriki to be 14.22%- 14.79'.% (118). Most fruit and vegetable peetins liavee been. reportedl as being com, posed of a mixture of polysaecharidescontaining suga'r residues, other thann galacturonic acid (13, 1, 3)I Thee isolation of aa pure: polygalacturonann has alsabeen noted, however (2)1.. The free pectin¢c acids isolatedl from bright totiacco.appeared',to.be of'thef pure polygalacturonan.types. The hydrolysisproduetss of these free pectinic acids gave onlyoney spot with, ltf values corresponding too that of the galacturonic acid standard: The pectinic acids derivedl from, pro- topectin, however„ were shown to be' composedl of D-galacturonic acid;; arabinose, and galactose with traces of xylose, rhanmose, and glucose as d'etermined by paper chromatogra- phy. The quantitative amounts. have not been determined. The resultsobt'ained by hydrolysis and paper chromatography (Table 2)) and electY•oph.oresis of the' pectinic'c acids'were ian agreement:. Eleetra-phoresis of the "free pectinic acids"' at a constant current of. 15 milFi'- amperes revealed one anionic com- ponent. Thee pectinic acid derivedd fromthelaminam and midrib proto- pectin wass not homogeneous and.was'd resolved into: three' major and two minor anionic constituents. The boundaries for the electrophoretic patterns are reproduced. in Figure L. The specific conductivities andl corre- sponding mobilities are listed in Table 3 When the concentration of peetinic: acids eas.vat3ed froml to 1.0 per- cent, no effect on. thee mobility was observed. This indFcates's that the vis- cosity had little or noo effect onn mo- bility of pectins. The apparent agreement between the results obtained from acid hy- drol}sts paper chromatog>•.zpby.and the electiophoretic'c properties does not constitute a final proof of'f homogene3ty. The values for the eqLUvalentweights of the free pertmte acids were close to tlte: themettcal value. The values 189 and 187 determined for the "free pectinic Ic3ds ftomm lamina and mldrlbtndtc rted 1 highh degree of purtty. The values for thee pcct3hic acids dertved from the proto- pcctl'n of.thefamimt and midrib were. 215. andl 228,. indicating other than galacturonia acid''d constituents~ The calculhtedl theoretical equivalentt weigfit for anhycbmgalhcturonic acid is 176. 3'uchh a vnCue„ of course; as- FigureI. Electtophoretic ascending patternsof' tobacco pectihr Ihli "Free pectinicc acid" from, midribt (B)~ "Freee pectinic acid" from, laminn; [C) Pectinicl abd'' derived from lamina' protopectin; (D)Pectinic acid derived from midrib protopedin. L- ' 4- 7- ~- s_. a 9 4-- - u Xr ~ ~ F I % I-- 000 .05 .I .IS .20 .25. .30 .35 C'oncnnMUlian' ,9/lpp1ml Figure.2. PJot of log of'. n sp/C'against concentration of tobacco pectiinic acids in the presence oF 0:16M sodium chlorido;, O-Free pectihic acid from Iemina;,O-Free pectinic acid from midrib: Q-Pedinic acid derived from lamina protopectin; Q-Pedinir.l acidl derived from midribb profopactin. . 00727539, (Tobacco Science 239)
Page 144: fiw68c00
United States Patent Office 3,420,241. Patented dan., 7, 1969'. i 2 , ler-sotublepolysaccharides,, such as; alginic and pectinic3,420,241 acids.and lheirr sodium and potassium sails, derived' fromMETHODIOFPREPARINGARECONSITTUTED plants other than tobaccopforexampie derived from cit:- , TOiBACCOSIIEET. EMPLOYING A PECPIN rus fruits. However, the addition, of cellulosic binders. ADHESIVEJbhn furth'er increases..the amount oflcellulosia material.in the. D. Ilind and Robert. B- Seligman, Richmond,Va.,, 5 product and tends to create an aeirid and bitter smoke; assiqrors~ lo PhiOpMorris Incorporated, New York,. µ,hen the product iss used to make cigarettes. The natural'. N.lr-, a aonporalion af Ylcginia . No Dvawing...Applieatton dnne 16, 1966, See. No~ 557,903,1 hydrophilic celloid gums such as guar gum, locust bcann which is a.continaatibn-iio-part off application Ser. No: gam„ alginn and other commonly used materials, such as. 336,009', Jam 6, 19641 Divided and W1is applicatiom Ir'iW moss, hauee additional disadvantages. These mate- Apr. 28, 1967;,Scr. No. 647,277 10 rials contain proteinsand other materials not found in. U.S. CL 131-1Q0. . 1 Claim. • tobacco which add distinctive flavors.of their ownto to-. Iot.C1.A24bd/14 haccoproductsduribg smoking, Thus, Frankenburg, in. describingg the use off various water-soluble polysaccha- ~-ABSTRACIP OF 'EHE.. DISCLOSURE 1~ 15 rfdes d'erived from plantss other than tobacco, teaches that care should be exercised that they must be.in a state of re- This disclosure relates toao process for producing a. finement. Frankenburg, teaches that thesee materials should binder composition for use in, the manufacture of re- bee free of extraneous matterr containing, compounds afconstitutedtobacco. The binder is made from tobaccoo nitrogen, particuiarlyproteins, and compounds of sulfur, plant partsand: involves thee use of the naturally occur- 20 phosphorusandl the.halogens; i.e., compounds giving un- ring tobacca pectins, which areobtained.tiy a processs inn desirable products of combustion or dry distillatiom. Such which ammonium.othophosphate.is employed tatreat.therefining is often.a very tedious.and'.difficult operation. tobacco plant parts. The tteatment involves the destruc- Th'epresent invention makes possible the production of tion of the alkaline earth metall cross-links of the tobaccoimprored reconstituted tobacco by a method which is sim- peetins,, the release of'thef resulting., tobacco pectinsby 25 pler and more effective than the.methods..previouslye em« a'a washing action and'e the. depositing of the released to-.ployed. The presenti method d'oes not requiree refining of bacco~pectins. on.the tieated.plant parts.. the binderr and is, therefore, moreeasily and efficiently employed than other methods for making.binders and for - makingreconstituted.tobacco. The reconstituted tobacco. Thi's applieatiom isas divisiom of application Ser. No. 30 whiehiis obtained in accordance with the present inven- 557,903,, which was filed on June 16, 1966 now Patent tion need not contain any. additionall cellulose or protein- No. 3,253,541, and which, ih turn, is a continuation-in- aceous material' which is foreign to tobacco,, since thee part of application, Ser. No. 336,009; which wasfiled.on, binder which is employed maybe denived'd solely from to- Jan. 6,. 1964,, now abandoned and whic}i„ in turn,, is a bacco,, and may be produced in such a manner that it: continuation-in-part of application; Ser... No:.240,130 filed35 contains no materialss other than those which naturally Nov. 26, 1962 now forfeited and application;, Ser:. No. occur in tobacco.. Thus, reconstituted tobaccoproduced169,995o filed Jan.. 16, 1962, nowabandoned. , inaccordance with the invention, can be so formulated'. This invention relates generally to a methodfor the as.to.be similarin physical.propertiesandlchemicalcom- producliow of. an adhesive tobacco compositionn in which position to natural tobacco.. tobacco: pectins withisn the tobaccoo itself servee as tbe 40 The term.pectic substances I will mean.those substancesbinder: whicA.are foundd in many plant products;,and which con-. , During the production andlprocessing of tobacco prod- sist essentially of partially methylatedi galacturonic acid&ucts, including aging; blending, sheet forming, cutting, joined'..in long chains: d'rying,, cooling, screening, shaping and packaging, con- The pectic substances found in tobacco plants eontainn sid'erablee amountss of tobacco fines andtobaccodusts are48 acetyl groups and differ considerablyfrom~ comrnerciaily produced. It is known that suchtobaccob fines; andi dustt available peetinss found in. other plants, including sugarr can be combined with a binder to form a coherent sheet, beet pectinsand cittus and fruit pectins. Tobacco pro• which resembles. leaf tobacco and whichh is commonly topectins are uniquely insoluble in hott water as.comparedreferredto asreeonstituted tobacco. One method formak- with protopeclins,from.many other sources and comprise ing,reconstituted' tobacco ofthisf general character iss dis-. 50 mainly water-insolublepectins. (protopeclins)) consisting closed iir United Stales. Patent Nb: 2,734,510, whereinn the of the calcium aad magnesiumsaitsof partially esterified COOCu~ssW,k CII>COO OR COOCa~rasstlnk OHO7C o /1!r -O-C H. H-C-o-C-I1 H-C-O-C lI it, C-O-C-H H-C-OR/ \H dH b,t b,1 bH t9occH. 4ooetr, o tobacco finess and.d dust are applied lo' a binder made of and slightlyacelylated polymers.of gelacturonic acid. Thei ~ earboxymethyl cellulose carboxymethyt hydroxelhytl ccl- divatentt calciumm and/or magnesium atomss act as cross- ~ Ibfose.or a suitable salt.thereof. The binder;,in such com- links between acid chains, thus making: thee polymers'.N positions, rongess from about' 5^o to about 5045% off the 70 water-insoluble. As an illustration, the structure of thew;h weight.mf Ute.tobacco.employed.UhiledStatesPatent.N:oe calcium salt of a polymer of galacturonio acid! can be ~ 2'.,708,175, describes aitiinder for'reconstituted.tobacco representecf as above. ~ which consists, of a plant gum., principally ofgal'acloman- nan. United StatesPatem 2'y592',554 to. Frankenburgg de- 1 Nuu•: RiJt.w othorwL e s;tneffiad, t/ic tenm °urctlncvwin, scribes, as binders..forreconstitutsd tobacco„variouswa- 75 nir ,owrut ,. ti„n•marr.~ ic.,~qa,q~r•d Iw.•r,t,uut;e,tbl>,wtuo W/e rerw. tn. Uc nuLnlnme.: . I
Page 145: fiw68c00
Tablh R''. Thin,I.ayerCLronmtography of Tahle V'. Calacturmtic Acid Distribution in Tobacco.Stcrosr PennsybanixStcm Extracts. NuOll Sample FractimtC Volume, hftl 0.005,, Nontigration; onlypolymerie Titer Stent NIe9.P 'flype Gram Fraction C;. J Fraction I), J Fraction E, % Total,. % 0.0:.10~ material No:migration; only polpneeicc Bright O131 3'~..46I 7~.341 11.44 12.24. material Burley~ 0.45 4..14~ 9.60~. 3.52~ 14.26~. Maryland 0147: 3.44~ 9,15: 4.66~. 17.25 ' Hydrolyzate of C 0.005 Galhcturonic; galuctose,, ambinose, xylose;.rhanmose:. Turkish, 0~.211 4.24 ~ 3'.90~~ 1.78~~. . 9.92'2 Fraction.D 0.001 Na'migration;o onlypolymonic Pennsyl- at ial vania 0150 2.52 7.25 7.85' 17.62'. m er Puerto 0~003 Noanigration;, only'polymcric material Rican: 0~.57' 2'.07 10.08 08 2'.69' 14.84~ H)drolyzatc of D 0.005 Galacturmric; galkutose, German 0.50~ 2.74 5.44~~ 8'~.50~ 16.68 Fraction, E 0.005 . arabinose, xylosey.rbamnose No migrationq; only polymeric Java- Brazil: 0.46' 1.74 5'.60 5.02 12.36 010 0' material Noo migration;; only. polymeric. Havana seed leaf 0152 1.59 3.64 8.10 " 13.20 Hydrolyzale of'E .. 0..005 material Galacturonic, galactose, ° Per cent Nased on starting material. 0.010 rhamnose Galacturonic, galactose, arabinose,rhamnose ' 0,025 Galacturonic, galactose; arabinose,, xylose;.; rhamnose: 00 .10 ~.20 Q Q.30 m.40 <.50 .70 1.0 00 ~ _ - - - -T OBA CCO PE CTIN'~ ~ ~- ~ _- - - ~ - - - _ - _ _ ..- ..,.. ..._ .. , - - - . _ - -_ `-. ~~~ - _ - - - -' - - - - - -- - =- rr =° - - _ _ . : 4 5 6 7 8' 9 10 1T WAVELENGTH (MICRONS)' 12 13 14 IS W V 2 < m 0 ~ Q 1 0' e 1 , 3~3 is give 1060 7. AGR. FOO©, QHEbt. 6 7 8: 9 10 11 12 13 14 WAVELENGTH (MICRONS) Fignre 41Infrared spectra of lobacco and'.cilnrs peelins 0 O i krences drolyzatc was mad The gz are given sample a sabsequc tions on prising.e: each frac Totor
Page 146: fiw68c00
~--~-----~ ------~ --- C i sas [Vol. 56i, No. 2 nam bath to.a volumeof 1J and the solution wan then cooled„neutralia,:d saturated neutral lead d the redu'cing,eugars (3) methodl. The per- ntageof dexL'rim ied' at 100°C., weighed, hod following the pro- ;e).were determined by xhen multiplied by 0.0; ah in the originatmois- =tances was; determined 25). as . modified slightly tedintocalcium.pectatc ;ole 1I as percentage of yextractionl with~ a hot ge loss in weightt due.to nat'erial!was determined md hislcoworkers, pao- T ag~J'f ~pentoasns~~.in the e.rlf...,eod of KOrschner :.tobaeeo) was extracted uethanol, and then for :racted mat'erial, mixed dropsof capryl alcohol % filtered an~ a weighed was free of.acid} dried IIoss due too the.suceas- rateriall was ground, re- is transferred toa 50 . ml through which paused a s.lubricated w-ithh a drop rubberr stopper).. To the idded iu the proportion ure was.stirred with the tostand in.the refrigorv action mixture was then led'd water was addedd to rm long was put in the rr 2 hours. After cooling isintered glasscrnmiblb, lours, and weighed. The icd', The result was cal- ture and eand-free sam- ledl by tlm. Iiirpal and ~ itnras also det'ermined ppach (43). Thefignres sl(_ presunt the total f9Wg] P1tInI:I1/8 & IB.1:coa+, co8seoslTloh oR rLl7E'-cvItLn.TOnACCO511 percentages of methoxyl occurring inn the. tobacco in ether-like and in ester-likecombinations.. Ttiepercentage.of inetboxyl occurring in ether-idke.com&ina!'fon was det'crmined as follows: the tobaccosample (equivalentt to 5 g ofmoi'sture-free tobacco)I plus 500:m1 of 0.5% ' hydrochloric acid solution was boiled for one.liourundera reflux condenser. The mixture wasallowed too coolyi filtered on a wcighed filter paper; and~ washed with distilled water untiP free of hydroclilorioc acid. Itl wass them dried at; . l00°C. to constant weight and the percentage loss due to, thee hydrol'ysis with the acidwas.calculated. The pereentage of inethoxyl'un thee residual. tiobacco was deter- mihed by the Kirpal and BOhn modification of the Zeisel methodi (27)) andlthe result, calculated,onthe basis of the: original unextracted eand-Geetobacco,, was.recorded in Table II under the.heading„ "Ether hlethoxyl.im Tobacco." The percentage of ester methoxyl wass obtained by subtbacting'.the percentage of~ etheemethoxyt.from the percentage of'total methoxy4. PolypNenala:-TLhe percentage.of total reducing substances(before hydrollysis)) andl the percentage of reducing sugars (both, expressed as glucose) were dhtermihed followingt'he.procedure:of'Pyrvki (31). The copper reduction'values were determioed by'the methodd of Bertrand.(3). The difference between.the percentage of total reducing substances (expressed as glucose) and the reducing,sugars (as'glucose): gave.the percentage ofpolyphenols (alsoexpressed as glucose) in the sample. Tdnnins.-Thee percentage oftannins was, determined by the hidepowdere method, following the procedure of BrOckner (5, p. 411). Oxalae Acid.-TFie weighedlsample (equivalent to.5g of moisture-free tobaoco)~ was.thorougldymixed with 20, g of acid4washed, ignited sand, 6'.ml of20eJe.sulfuric. acid', and.20 g, of powdered pumiee. The mixture was transferred to an extractiow thimble;, andextractedd withh ether for 24 hours in. a Soxhlet extraction apparatLs.The oxalicc acidd in tlheethere extract was removed by three successive 15minuto extractions with water,.as suggested byBrOckner (5;l p. 388). The oxalio.acid.wasprecipitated as calcium oxalate folloxingBr~uckner's procedure. The calcium oxalatee thusobtaiued trasdissolvedlin ahot.dilute-.hydrocHloric acid solution (7b ml'ofl water and 5 ml.l :1. HCI):,, made neutrall to phenolphthaleim with sodium hydroxidesolution;e and then.acidulnted with 8-Mdrops of.10oJoacetic acid solution. Onemll of 10% ealciumchloride solution was added; the solution was heatedd to boiling and!' allowed t'ostand overnight. The calcium oxalate obtained was ignitedfor9 hour at' 050°C. From the wcightof CsO the percentage of'.f oxalic acid was calculated. Citric Acid.-The organic acids werefirst'separated.from the tobacco by exhaus- tiveextrnctioa with ether and'the acids wereextracted from.the other solution with~ water,, following the procedure described above. The citric acid in the extract.was't det'ermined bythepentabromacetone methodl follo.win.g.the procedure of S'Iartmanm and IIillig(10). Elaeva+tllalic Acid: The organic: acids in tite.sample (equivalent.to 5 gof mois- ture-free tobacco) were extracted witlr,ether,, and the ether solution was extracted withwaterasabove:..The combined aqueous.cxtract was heated cautiously on.tha steam.bath until theether was removed and was.then made to100 tnl..A 20,mll aliquot was transfewed.tod a 25ml'', volumetric flask, onegram: of sodium acetato'was~e added, and the solution was made.alkaline to:o phenolplitlialcin by the dtopwisc addi-tion of a 10% sodium hydloxidc solution. The solutiomwas madeslightlye acid with. glacial acetic acid and oneml of this acid! . wns added in excess. Two grams.of uranyll acetate (or su(flcientto saturate thesolution)'.wns,added.and'I the solution was shaken peri'odicall,y in tim course.of 3 hours, while the'tlaskwas protected fromlightns muclrh as possiblea.Activated enrbon•(0.3. g) was then mixedd in, tiw.carbml.wae allowed to • The <arbon (Nuclur-C'190.N)accci vdlthe fallou4ng pretrentment: if. n. mked ovumighl ina 1ei perecntlsulfuric>cidadalion;.tilternd;washedfineofucid;ddedln67L°O.;andpulvunzed. ~ ~ ~. ~
Page 147: fiw68c00
United States Patent Office 2,769r734 Patented Nov.. 1956 21. vide a selfsupporting, moisture resistant, tobacco sheet material which is easily worked into a smoking product 2;769,734 and which. has substantially the natural characteristics TOBACCO SHEET MATEIRIAL AND METHOD OF, of tobacca including taste, calor and aroma FOItMING' b'. A further objecf of thisihven6on is toprovidea method of forming a self supporting, moisture resisiant; David Bandel, Stamford,Conn., assignurEo Intemationai tobacco sheet material which is easily worked into a Cigar MaeWuery Company; a corporation of' New' smokiog product and'. which has substantially the natural Jetseyehameteristicsof tobacco including taste; color and AppBeatlon July 14,1955rSerial N66 522;16210. aroma. These and othcr. objects and advantages of the inven• 24 Clalms; (CL 131-15) tionare daboratedand sot forth in the following,descrip: tion. The advantages ; of the present inventioaare realized This application is a eoatitmation-ia-part of copending15by mixingwith an adhesive filmforming agent, which applicatiom Ser. No. 477,1111 filed'.. December22; 1954, maybe dispersed in water, and. which is adaptable to now abandoned'. the formationr of awater resistant sheet, a quantity of This ihvention relates to self:supportiug tobacco sheep finely dividedtobacco, to form a viscous suspension, and material and to a method'of forming it. This inven6onforming this suspension into a dry tobacco sheet. Filler further relates to improved smoking articles. made with 20' material'. andfibersmay also be incorporated with the such, a produot. Particularly, the ihvention relates to a binder. The viscous suspension may be formed into substantially water resistant tobacco sbeesmateriall char- a sheet in.. many different ways, such~ as extrusion, cat- acterizedby the aroma, color, taste and. burning: ebar- , endering, molding;ar by applying it upon asubstantially acteristics of naturall whole leaf tobacco, impermeable filtn forming surface, for example. Heretofore,differentkindsoftobaccosheetshavebeen 25 The drawing illustrates sehematically a typical pro- made by various methods. Paper making techniques cedure for the manufacture of tobacco sheet material ac• have been employedin which.mbacco ispulped ina large cording tothis invention.. quantityof'water and many afthe desitableelements of In tobacco~ sheet materiall prepared according to this natural tobacco such asflavors are leached away.To- invention, the adhesivefilm forming agent serves aa a baccohasheen wet ground toa coltoidal'paste and theu 30matrix for dispersed tobaccoparticles.. These particles c.ast into sheetswhichdo not' burn.as well as the product areimbedded'. in the adhesive material: Thismaleriall is of this invention. Laminated.tobacco productshave also formed from a slurry or mixture of tobacco particles and been made by the applicatiomof alayer of tobacco dust adhesivematerialsand shows a more homogeneous struc- m alayer. of adhesive: Homogeneous tobacco sheets ture than lamihated forms. Whil6 both laminated and have been made.withwater solubleadhesivetlinders and~ 35 homogeneoussheetmateria]s haveto6aceoparticles im- both wet and. dry ground tobacco. Wates. insoluble bedded in adhesive agents, only the homogeneous sheets binders whichimpaa the:smoluhg quality of the tobacco arecharaeterized by toliaccoparticles both dispersed and have been suggestedi imbedded in the adhesive matrix. For example, shects Wariousmaterialshave been proposedas film forming which have only a.surface coatihg of tobacco particles agents. to be used in converting tobacco particles into 40over. a film or layer of adhesive which is internally free forms suitable for use in tmanufacturingcigarettes, cigars, from tobacco~are clharlylaminated forms, whereas sheets pipe tobacco, chewing tobaccoand' the like. Perhaps, which include tobaccoparticles entirely surrounded by the primary characteristic required of such agents is thatadhesive material as wellas a.sudace coating of tobacco they should not introduce any offensive odor, taste, or are of the homogeneous type. color. into the tobaccoor the tobacco smoke or. alter4a The adhesive formulation may include intermingled substantlally thenaturalproperties of tobacco as a smok-fifibers to add' strength torthe tobacco sbeeG or optionally ing, product. fibers may be omitted. Some suitable organic fibers are Other considerations are also important forthepraopolysaccharidessuch as cellulose pulp in the fotm. of tical application of these agents totobacco. sheet ma•cigarette paper pulp or glassine paper pulp. Mineral teriaf. It is highlydesirabie that a tobaccosheet ma-b0fibers are also suitable such as asbestos or glass fibers. terial should have sufficient tensile strengthand dimen.The fibrous material is suspended withtheadhesive film sional stability to withstand vigorousmanipulationin thei forming agents, preferably in a small quantity of water. eourse of manufacturing and so be self supporting. It The fibrousmaterial. and alsothe selected adhesive mustalso~hold together well in smokingproduetssuch asfilm focming. agents are of a composiuion, which when cigars; cigarcttes, orpipe tabacco. Preferably, it. shoul~dl 65 bumed iatheamokingarticle donot adversely afiecrthe have at lhast the tensilestrength of'natural leaf tobacco:blandness; 1lavors,. aroma or. burning qualities of the to- Moreoveq the tobacco sheet. material should be llexibte, bacco. This characteristic is~ described as; being "com- The tobacco should, resist disintegration by moisture andi patible" with tobacco. havewet strength~ so, as not to gum up upon blending, In the finished tobacco sheet the adhesive formulation casing and similartreatmenr as well as when used ulti. 60 maybe between 0:5%a and 33%nby weight but a pre- mately insntokingor chewing. The film forming,agent, ferred range isbetween.l%and 20%,, Theviscositgof d should be easyto. hand7e; should'be chemically stable, the formulation, mcasured on a [irooi:field viscometer 0 should be in a.conveniont form, and,should require little should tie between 500'. and 5,000;000centipoises: The ~ special treatment toprepareit for final use.. . preferred yiscosity range is between 6,000 and 20;000 N Heretofore, no liomogeneous(nandamihatcd)~ set6 65 centipoises. The adhesive film forming agent orbinder %I supporting, substantially water resistant, tobacco~ sheet is selectedi toimpart to,the finished dry tobacco sheet ma- w~h material whicli burns with the desirable characteristics lerial a high degree of moisture resistance. The pre- natural todaccohas been made. Homogeneous; mata fernod film forming agent is a polysaccharidbandl is of rial is made by a. suspension rather than a. laminating 70. usually water dispersible in the first step of the method'. of method. forming the sheetaccordingto thisinventiom When the Accordiugly,it is an object' of this invention to pro- adhesive: film, forming agent is provided im the form. of
Page 148: fiw68c00
3,435;8W9 3' 4i e~[ms-llnk arws-tiak COOCa-tl CHtCOOOrr COOCa-J HO OU b -o ~ tT hT 8 H H III -0-0 ~ ~C-o- \ >Ca C~j ~j%c-0-c\~j lc_o. ~_o. C-C d'-O Hb be bH Hb booaH, boooH, Although pectins.havelong been known as constituents be. hydrogen„ in which case thee product is pectic acid,, of plant tissue, iN hastieens foundl extremelydifHculty to or R may be a monovalent inorganic cation, suchh asseparete.pectinsfromtheremainderof'plantcompositions 15,,sodium; potassium or ammocium, in which~h ease the and to obtain ~ them as. homogeneous; eompositions. The product is a soluble peetale.. reooveryof pectins from tobaccoo is even~ moree difficult than the recoveryof pectinsfrom~ other plants:. cmv;-ymk In accordance with the.presentinvention,tobacco parts ~ . arebondedtogetherbytobaccopectihswhichare.speci-`-'0' CoOCa-~Ca,COO on 1 li all¢.prepared'y by amovel process which yields.these pectins C-o I-O im a form in which they can be employed as binder g H x tnatierials.. Our process forpreparing. tobacco pectins orteiewroieun comprises firsc reacting, tobaecoparts, preferably in' a -O-C-H a-o--o--C-H a--r-0-+~H, form iawhich theyptesent a large surface.area,nvithan 251H a/' _ 1H O/ aqueous solution of a non-toxic reagent which iss capable '~_iI . ~f_ off reacting with and destroyingg the calcium and mag- Hb bII COOCHt nesium~, cross-links in the pectinaeeous substances which naturally occur in.tobaeco. After the calcium and mag- oittiCIrru PeCTe2e nesium, cross-linksares destroyed,, the tobacco pectins are 30Coott,. CtirOOO oai liberated andd made availablefor use as a binder. The b-o b-b tobacco pectins are then dissolvedlor, dispersed.in solu- I Preductanavtngtion,g or are at least sufficiently released from the later- / \ /~II`loxereso~umm.. sticesoft'he.tobaccomassso: thattfleyform, a coating on a-e.-O--C-a.a-o-o-+Z-oa-ceattecmn.thanthe calcium Dretate in the surface thereof•.Tobacco:pectins which are dissolved 35 `H: H/ 1H/ttletreatingeatuuom or dispersed in the treating. snlutions, aree thereafter b_O precipitated or deposited from the solution,, so that they bHbOOCHr become.available for use:as a.binder material. In this way, 1910 . thee tobacco, parts can be bonded together by a binder p1sCTiC eeto OHmateriaPR which is's made of ingredientsthafares closely 40' BOt,osnE rsaTeTs related to thenaturalllyoccurring:ingredients of'tobacco. The bonding can be accomplished': without the neeed' for In one embodiment„ the reagent, whictih cann be,, and the purification: ofl the: tobacco pectins;, inasmuch as any .. preferably is,, ini aqueous solution, acts by fbrn:ing a. materials which are present aree closely related'd to the precipitate with the calcium.or magnesium„in which case, materials which arenormally~present in~tobacco and, thus, qg, itt can be a water-soluble monovalent metal salt of the do~ not add any undesired qualities to the tohacco:. formula. MnX wherein MM is a monovalent inorganic The tobaccoo parts which can be employed in the pres- cation,.n, is am integer having a value.of 1, 2, or3 and X ent invention including: tobacco leaves, stemsands stalks, is an anion which.magbe monovalent.or polyvalent, such or a mixture'.of these, whether in; sheet„flake, particulate that the calcium salt ofl thee formula CapXs is essentially or other form.. Preferably, the parts are ground cun or 60insoluble inthe treatingg solutionn and p andqd are inte- otherwise prepared in aCorma which presents.a large sur- gerscorresponding to the functionnlityy of X.. Monovalent face area; The portions of the plant.comprising the stems I cationswhieh are effecteve include thealkali, metals such or midribs, and often referre& to as tobacco pcliol'es,.are as.sodlum, potassium and lithium,, and also, include such the preferred starting materials. Tobacco stalkss contain monovalcnt cations asammonium, and substituted am- lesser amount9ofpectinaceous materials but can: also: he 55 , moninm.ions(NRq)+,whereR=aryllor alkyl. The anion employed.. portionn of the molecolee may be. COx , 1°Oi , HPOq ; Ini the: firstt stepof the process. tobaeco: pectins are HzPOo ;. anduhe like• For example, the compound M„X liberated.front pectinaceous materials in tobacco byreact- could besodium earbonate;. Na`COa, since sodium is a ingthe pectinaceous materialscvith a rcagent which;,under monovalent inorganic cation andl calcium carbonatee is the'conditilons.of the reaction,.is reaetive.wiih thecalcium g0 essentially water iusoluble. P:dditionall representative.ex- (and/or magnesium) contained in them toformo aa com- ampless of precipitating agents are the orthophosphates, pound or product having a lower calcium ion, and, in metaphosphales and carbonates of sodium, potassium, thee easeof magnesium, magnesium ion.. concentration a lithiumandt amntionium;. In the case of thee orthophos- in the treatingsolutiom than, the naturally occurring cal- phntes,. the anion portion off themolecule may be either ~ cium (or mngnesium)~ pectatc. This reagent, may, for PO.°, I4PO,; or HelOa . Speeifieally, for example, Q convenicnce,, be hereinafter referrcd toasa"cross-link when ammoniurn orthophospltateis used, the precipitate ~ destroying rcagenti" is calcium and/or'magpesiunt.aninionium phosphate.llte ~ The reactionn may be generallyy repre.sented by Eqpa- pl!' of this reaction should be berwecn about, . 5.8and. 10 ~ tioni,whichillustratesthereactionofonetypeoftobacco andi'retemperaturcmaybeas.high.as41]0°C:but:should,~ protopectin (a calcihmsilt off a polymer of galaoruronic y.0. Ps-c!ci ably be lxaw<enl aGour 25° C. and about 135" C. ~ acid), whcreinn calciumm cross-links are present with the for a period of fPom abouP lI minute too about 24 hours, jj, reagent of thepresenl invention. Inthe equation, R may Preferred precipitatingagcnts which may be employed are:the alkalimctallcarbonatcs, for example, sodium car. •RrrnnrrntrntlnnwrmrnnrnnrrOtrntlnn.urnrtlvllY ncFrt bomde and pot.ttiSi(II1PcnrbOnate, particnlarly preferred fnrtll In ! 1.. tunr; Trxth-nl<: nf PI ynlr1l Chrmlvtrr':'• 2nd enltlun, [v1A- 95't, rY~ Vnn. Nn.trandInc 75 ' Preclplhltingg aGCntSwhlch mlty be employed' . are thG b-b b-a b-b
Page 149: fiw68c00
The Isolatiora and Characterization _ Of the Pectic Substances From Tobacco By R. de la Burdet and S. F. Norman Philip Morris„ Inc., Research Center„ , Richmond, Wa., U.S.A. Introduction extraction procedures.isolate pectinic P'ecticc substances, which, yield-. acidscontai~ningarabinose;.galiactose, pectinicc acids, exist in plant tissue glucose,, xylose, and. L-rhamnosein as water-solhble"free. pectinic: acid" addition to theanhydrogalaeturonic acid (13; 19' 14 6) d t i lubl ;. „ . ' an aswa er, nso e.pectates'desig- nat'ed as protopectin. This paper reports the existence Most pectinic.aeids„isolated..by the of'a "free pectinic acid"' which was use of chemical agents and', heat, con- isolated fromtobaccom by' an aqueous tain~ both the water-salublo "free extraction. Thee composition of the pectinic acid'"' and thee pectinicc acids Polygal'acturonidee wascharacteriaed deriuedl from the water-insoluble by the absence of nonuronidee com- protepectin . ponents. Thiapectinic acid was com- Polygalacturonic acid, thee basic pared with the pectinic acid derived from the remainingwater-solubde buildingblock of the pectiac sub- protopectin which; contained, ittn addi- stances: (8);.is usually accompanied tion to, galacturonic acid,, arabinose, by several nonuronide carbohydrates. galaetose, glucose,, xylosee and Thisassociat'ion: is sofirm„that most L-rhamnose:. Table 1', Content of Tobacco Pectic Substances. .. . Extracted TotallPectic Substances . Pectini as % % Weight Anhydrogalacturonic Acid' CI Free Pectinic Acidd fromi Lamina Pectinic Acid Derived from Protopectin of. Lamina TOTAL FreePectinic.Acid from, Midrib P'ectinic Acid Derived f¢•om, Protopectin of~Midrib~ TOTAL 2.30 1ll20 13.50 , 14.12 . 3.24 • 11.70 14.94 . 16:50 (TobaccorScience L56) atan 25-3 Experim Startin The s quality - 1963' c ental Proc g Materia tarting m flue-cured rop, natu edure l'. aterial wa tobacco;i rally aged s med type in ium- 101A, hogs- filtr: etha Pect pect R heads f conditio midrib ground sizee of or 2 year ns. The were sepa in aa ham -140 mes s at the tobacco Ih rated ma mer mill h. The w ware mina nually to a ellLgr house and and sieve ound puri timc tatit Hyd materia 95%a% et and fina ls were t hyl alcoho lly driedi hen extra l'.at 75°C at 45°Cin cted w air vaeu with dried a. Pect TI with 50 n Isolatio n of "Fr ee Pectini e A'ci dt"' 2.5 Extra water y pectinic perform ousmix ction of..t ielded thee acid." ed by hom ture..in a he dry re water-sol Thee extra ogenizi~ng valve-typ sidue uble ction the e pre with "free was aque- ssure .. neut The Iiltr:. tatet and homogenizer (14tanton-Caulin) for trate 35 minutes' at 20-25°CC and 4000 ow a psig. The filtered The pe from th 95% et aqueous andi the ctinic aci e su~perna hyl alcoh mixture filtrate ce d was pr tant with ol (0:05 was ntrifu ecipit acid N HC then ged. ated ified I as mier Wha chro: ascei tate, 3 vo calculat Isol'atiomn ed forthe of' Pect .final mix inic. Aeid ture). Der ived O~ t tate . aceti spra7 from~. Pr otopeoti•n O ga~t The washed ethanol,.. water-extr sequent ethancl-e acted res ially wi ther. (50: iduee th 50i, V was 9596 /V) ~ ~ N ~~ suga veloF mixture then air extracte and final dried. Th d with ly with e e residue 0.5% a ther, was mmon and then ium ~ ~, . Dete: AeidTh oxalate Three ex tract'ions withh con- ~ .. meas - PrmnitlY en. UnOed' Notievoxeipanentl u !)irecror, Ftdfeuf huMYle nf fnd~bint l.'HteKxl OeAudi;, Lnpot, WiDertw, carBt MeC] to ae
Page 150: fiw68c00
~'Di Yi-1'f1Y 3r435stS~s + tTnited 4ztates patent ce Bateneed Apr. 1, 1469 'States Patent 2 592 554 p F k b d ib , , o ran en urg escr es;, as 3,435,829- bi d f n ers or reconstitutedi tobacco, . variouss water-soluble ME1'PJOD OF PREPARIi\C ARECONS7TIUTED. '. -- TOBACCO SHEET • , polysaccharides, such asalginics and pectinic aeids:and their - John D, Hind and Robert B. Seligman„ Richmondy Va„ sodium and potassiumm salts,, deri'ved fromm plants other assignors to Philip Morris incorporated'y New York, 5 than tobacco; for example derived from.citrus.fruits. How- N;Y., a.corporation of Virginia ever:, thee addition: of cellulosic binderss further increases . No Drawing. ApplicatiunJunr.16„1066,Ser. N'o. 557,903, the amount of cellulosic material in.the:product and tends aow Pntcnt.No-3,353,5tl1, dated Nov: 21, 1967, which~ to create an acridandbitterd smoke when the productt is -I's.a eontinnatlon-in-part of application Ser. No, 336,000', used to make cigarettes.. The natural hydrophilicc celloid Ian. 6„ k964'..Divi'ded and this.application Apr.28i:1967, 10 gums such as guar gum,, locust bean gum, algin and other SenNo,647,276 Iut. QG A24b 5/]6 commonly used materials, such asIrish moss, have addi- U.S. CI. 131-140 ,3/l4, S108'. 2 C1aim tional disadvantages,. These materialls contain proteins and other materials nott found.in.t'obacco which add distinctive . . .,, - Aavors of theirown to tobacco productsduri:ng smoking. .' ABS'I'RACT O'FTHR DISCLOSURE ' 15. Thus, Frankenburg,.in describing the use of various water- soluble polysaccharidesderived from, plants other than This disclosure relatess to aprocess for producing atotiacco;a teaches that care shouldi be exercised that they binder compositiom for use ini themanuBacture of recon- mustbe in a state of'refiaement. Fmnkenburg,teaches that stituted tobacco. Thebinderii made from tobacco p1aaG these materials should be freeofexi raneo tt us ma er con- .' partss andi involves the usee of the naturally occurring to• 20 taiuing compoundss of nitrogen, particularlyproteins, and b acco, pectrns„whreh are: obtamedi by a process m, whtchcompounds of sulfur, pAosphorus.and, the halogens; iie., an inorganic acid is employedd to treat't the tobacco plant compounds givingg undesirable productsof combustion or parts. The treatmentt involves~ the destrucGon.of the.alka,drydistillatiom Such definingis often a very tedious and line eatth~ metul cross-links ofthetobaccof pectins, the difficult operation.. - releaseoflthe.resuitingtobaccopectinsbyawashingaction 25ThepresenlinventiommakespossibletheproducGonof , . . Ser, No. 169;995 filed Jan.. 16, 1962, now abandbned., eontains. no materials other than those which naturally This invention relates„ generally, to tobacco composi, occur in~tobacco. Thus, reconstituted tobaccoproduced' iv -- ..lionsands methods ofl producing suchcompositions. Moro-accordance with the invention, canbeso formulatedd as . . particularly, iheinventiomrelates to improved adhesiive40 tobesimilarinphysical'.properticsand', chemicalcomposi- materiala as bindersfors reconstituted tobacco composi- tion to natural tobacco,. Nons- Im addition,, the invention relates to methods for The term pectic substances! will means those substances _theproduction of novel adhesive compositions. comprising, which are found inn manyplant products, andd which con- ~ tobaceo pectins, toneconstituted tobaccoo containing to-sistt essentially of partially methylatedgalacmronic acids bacco pectins as binders,, andd too smoking compositions. 45loined inilongchainsg made therefro= The pectic substaneesfound in tobacco plantss contain During:tNeproductionand processing.of tobacco:prod-acetyl groups and.dilfer considerably from commercially ucts, includingaging,.blending, sheet forming, emting,dry- available pectins found in otherplants„ includingg sugar ing;, cooling, screening, shapingg and'packaging;d consider- beett pectins and citrus and fruit pectins. Tobacco proto- able amounts.of.tofiaccofines.ands tobacco dust are pro- 50 pectins and citrus and fruit pectins:,Tobacco.protopectins duced. It is.known that such tobacco.fines and dusYean be are uniquely insolublee in hot water ass compared with combined with a binder to form a coherent sheeqj which protopectins from many other sources and comprise resembles leaf'tobaeeo and which.iy.commonly referred'maihly water-ihsolublepectins (prompectins) consisting ~ to as reconstituted tobacco. One method for making ne- of the calcium and'magnesium salts of partially esterificd g eonstituted', tobacco.of thisgeneral character is disclosed J5 andd slightly acetylated polymerss of galacturonicc acid. N inUnited: .StatesPatentNo.2,734,510:.whereinthetobacco The divnlrntt calcium and/or magnesium atoms act.as~finesand dust.are applied to~ aa binder made of carboxy- cross-linksbetweenmcid chains, thusmaking.the poly,nersCA , methyl cellulose; carboxymethyl. hydroxethyl cellulose or water-insoluble.. Ass an illustra!ion, the structure of the N a suitable salt thereof. The binder, in such compositions„ 0U calcium salt oG a~ polymer ufgalactttronio. acid can be Q0 rangesfrom about 5% to about 50% of: the weight of~ represented as folibws: . the tobaecoo employed. United States PatcntNo. 2,708:175,describes a binder for reconstitutedd tobacco which con- ~s!nic... ocnern•wc encemeq, O,e term, ^nrenns^ w•m, tnr - sistsofa I'ant um, rinci al1 of alaclomannan..Unitcd rn°vrnlrnre, nerehmrLCrbu emviexed Intct¢bauaeably wttu p g P p y, g . t1,e4erm•'VecOcnubstauces;' . . ~ and the depositing of.the released tobacco pectins on theimproved'~ reconstituted tobacco by aa method which is treated plant parts.. simpler and more. effective than the methods previously ' . empioycd., The presen[ method does not require refining - - of the bihdenandds, therefore; more easily and efficientfy This application is a division afapplication Ser. No: 3o employed than.other methodsfors making binders and' for .. 557,903,, now Patent No.. 3;353,541 granted Nov. 21„ 1967,, making reconstituted tobacco. Thee reconstitutedd tobacco . which.wasfiledlon.June 16,1966:andiwbich„in turn, iswhieh isobtaiued in accordance with the presentinven- ' inven- a eontinuation-in-part of application, Sen. No. 336,009;, tion need not contain any additional eellulosee or peo- w now. abandoned which was filed on Jan. 6~, 1964 and which„ teihaceousmaterial which isforeign to tobacco, since the in turn, is.a continuation-in-part of application, Ser. No„ 35 binder whiclih is employed may be derived solely from 240',130 filed Nov. 26,.1962, now forfeited and applieation, tobacco and may be produced in such a manner that'~ it
Page 151: fiw68c00
13 3,43.5;829 cooked with 10% sodiunuearbonate for 30 minutes at at.mospheric.pressure.and for 20minutes at 20 p.s;i.g:.Afterthis. cooking, the woody tissue wass still hardd and! could not be pulped'in a Waring Blcndor:. The corticall tissue and pith were.soft and pulpablc: Each of these.lattes two preparations were suitable for useiir the 5 . praparalion of reconstituted tobacco. Example~ 14~ 14 This mixture was then employed as a binder, being pumped through a.filter.to storage tanks and'subsequently sprayed on tobacco by the method and equipment de- scribed in. U.S, Patent 2,734;513,It was applied at the vatee of 3'3 grams per square foot too form a reconstituted tobacco sheet having.the following physical properties:: Basis weightt ---------------------- gms./ft?__ 10.2 Moisture content ----------- (percent.by weight__ 13,0 Coarse ground bright stemm tobacco fines (30 grams)Tensiie ----------------------------- kg,/in.__ 0.82 were:washed tHorougAlyin cold water, andthemplLced in 10' Foldi tensile _________________________kg:Cin:__ 0.82 a boiling aqueous solution of 3 grams.of dlammonium w'ork-to-breaka ----------------- gm. em;/ft.?__ 1610 monohydtogen:ortfiophosphate and'cookedi for. 5 minutes. The mixture was then placed in a Waring Blendori After °welqht of all the Ingredients, Ineludtug tobacco pulp; averyshortperiod.iitthe.Blendor,.themircturewas,con- `s~~ Co~oP3t~anranlncesratorattaceedtothelnstrovTenslle vertedl too a viscous, fine, impalpablhe slurry; wherein the I6Tester. tobacco stem particles had beenn completely separated to - Example 17 unitsof cellular size. This.impalpabl.e mass was suitable Burlcy tobacco stemsaverewashed incold.waterwhere- for use as a binder in reconstituted tobacco. When re- by,, fronu about 75 to 80%of the natural content of mixedd with some of'f the cold wa)er washings removed 201 water-sofuble substances were removed in the.wash~watere in the first step,, thee impalpable massimmediately : be- The stemswere then dried and.groundiand used to~ make camee viscous and eventualfy jelled to a soft mass. a binder as follows:, For furthereomparison, aa similar sample off coarse One hundred parts off water were brought to a temr groundd brightt stem fines(30; grams), was dispersed in pemtureof 195:° C., and tothiswere added: boiling.g water and cooked.for aboun30 minutes withh three 2'a, 7:00 parts by weight (dry basis).) of the washed bnrley gramsof diammonium monohydrogenn orthophosphate.. stems, ThepH of this mixture was bronght..to avalneof'.7.1 by 1.05 parts diammonium phosphate, and the addition to the mixture of. 30%% aqueous ammonia. 0.70 part oEglycerih, as a humectant. The granules of tobacco could.then be refined to apalp- Concentrated aqueousammonias wass then ad'ded to able pulp, similar to.the soft mass produced in the.experi- 30~ bringg the pH of.themixture to: a valueof at.leasf7.1 but ment described in thee first't part of this example.. no higher than 9.0:. Example: 15The mixture was. then stirred for one hour and sub• Burley tobacco stems: (!14 pound), were coveredl with 99ry~nofYthe ne ul in d ecess~water) ereouldr be shak a than distilled water,, allowed to,stand several hours andd the p p (in 35 through an 18' mesfi.sicvch waterdecanted.. This step was repeated severall times and The resulting, material was then employed, as a binder Frnallythe.stemswere.covered with.distillediwatercontain- for tobacco plant parts to form a reconstituted tobacco ing 50 ml, oEf concentrated HCI and left overnight at sheet in a.manner similarr to that described in Ekample 16, 24° C After standing overnight thee acidic water was decanted'. 40ExamP]e. 16'and the stems washed repeatedly free of. H'C1 until the.. Burleytobaceo stems were washed.incold water.where- wash.water gave no precipitate when treated.with silver by, fromm about'73 to 80% of the naturall content of nitrate.solhtion.The-stemswerethencoveredwith.dis- water-solublcsubstanceswerc.removedihthe.washwater: tilled' water containing,15' gtamsof: sodium carbonate.and The: stemsweres then used directly in the wet conditioa left overnight at 24' C. The pH of the sample;.the follow- 45to make a.binder as follows: - ing morning, was 8:8-. Thestems were swollenanch soft One hundredparts of'~ water were brought too aa tem- and were easily disintegrated withh the fingers and the peratureofl195"C:,and.to.thiswereadded: mixture could be homogeniiedand'employed,d as abinder. 7.00 parts by weight (dly basis)) of the washedd burley in reeonstituted.tobaccod stems,. . Examplel6. 60' I105 parts diammonium~phosphate, and 0.70 part.of'~aglyoerin, as a humeclant;Theapparatus employedl in this experiment was large: Concentratedd aqneousammonia~ wasthen added to scaleequipment, comprising a.200 gallonn conical bottom;, bring the pH of the mixture to a, value of'f at least 7•.1 open top,., stainless steell tank,, fitted. withh a Cowles hi& but no higher than 9.0. shearmixer, 66 The mixture was. then.stirred for onehour and sub:- ..- Onehundrede and'forty-eight gallons of waterr weree sequently refined in a disk type refiner untill better than placed.inrthe tank and'heated to:o a temperature of 207" F.. 99%% of the pulp~ (in excesss water) could be shaken One hundred and twenty-eight pounds of bright tobaccoo through an 18meshsieve: (milled topass a 6 meshh per inchh sleeve) stemss were. Theresulting, material was thememployed as a binder added;, while operating the: Cowles.mixers at a.low. specd.. 00 for tobacco plant parts lo form a reconstituted tobacco Almos6 immediately after the: addition: of the tobacco,, sheeti~n a manner similar'to that deseribedlin.Example 16,, nineande one-quarterr pounds of diammoniumi monohy- drogen orthophosphate (technical grade), wcreaddhd to Example 19the mixture. Ammonia (assaying 28%, tiyweight. NHs) . Burley tobacco stems were washedd inn coldwatenOd was added to adjust the pHto 7.1.. Thee mixing: speed 05whereby,fromabout 75 to 80% of the natural contenl was increased to. 1700 r.p.m. After a.period of 3 minutes of water-soluble substances were removed iitn the: wash~the temperature of the mixturewns194° F. hfastof the water: The stems were then dried.andground and used particles in thee rnisture were soft enough to bre smeared to make a.binder as follows: %J by hand and Ihe.mixture:had a jcllydike consisteney, The One hundred parts ofl water were bronghrt too a tem-~ mixingg was cnntintted for' 1 hour to obtain the highest 70 perature of 195° C., and todhis.were.added: ~ N- possible state ofdisiotegrationy although a 15 minute 7;00 Ivlrts by weight (ihy basis) of thee washed burleym period appeared to be.sufficient'.for Ihis purpose.. stems,. The viscosity of the misturewasfound tobe t0,400 1.05 parts diammoniunu phosphate; andd c.ps, and.its solids content was..found ao.be 8.05% . by 0.70 parnofltriethylenc.glycol (TEG),,.as ahumectantL weight. 75 Conccntratedaqueous ammoniaa wasthens added to
Page 152: fiw68c00
Das +nm Autor nnal sc,incn.NlRarbcitern knnstruierte.Shcuu rn;rriit' ht eh utot. insnfe rn ainrre Shcntt'vnrwiirts, all be I<Lc.vcm m ben der. Ani dd der Stflueerzyklen.n nudl dir' Uchnnug der Ptiiflin};q als. Fmlkliimi dbr Sthrurrvgklhnz:dl registriert wird mrddaraus dmm. C N d:u~ \4•rh:dlDu der SddidAidilmee wiihrundd des. Imuurns rikf;gesdelussrn wrrtlLn kann. Wrn das.Sdu:rlrrn dcs,Gams witv an cjnembftdallfliidw >.u e•rlialtrnunrl die f$nustanades Sdteuerglicdi+s zu sidSenl: ecird. dasGarn mil einer Adlutedlncfile gt•- sslieucrt (14ild 8)'. Djw. Priifgcr'it istt in Bild 9'vt'ran- sdlauRt'!H. Ipc-r Gnrnabsd6ritt +uird'' in dlu 1'cl'c•mmen 1 und. 2 aingespauut und mitt der Adlatsrhneide 3 gCSduvrrl; tlic an dem' llfitg{•n 4: befesligt i6't und siub tnit diuse•n[ liin- mld harhe+vegt: Dicse Bewegung.5vird mit dem fF.urFk•lgrtriultt•- im G.ehzuse nrbem dmu R1o[oc9 ervrugt..Eiu Shceueayklr¢:ist.einrknmplette Hin- rrnd fl!rrbeargung der. Ac6atsdrncidb.. D:nnit die ggnze Fhidie ulUs Pniflings gleidlmafiit;gesdleuent w•inl,, wird er mit den fCli.•nlmen iin Dtehhewegmlg versetz6 untl drt•ht sidl riunlnl. vubrend. 24. Zyklen: Die Anzabl der Sebruerzpklilbwfrd von dum Tuucon- zdhlce 8 re•gistrii•rl Di•r Flemmknpf 3 ist sn verkeilt, dafl cr sidlh in Nadenrichtumga:c•rsdiicbcn kann. Die Wcllc' 2 ist mit: einem' 1Re:gistrierapparaU ven- Lrmde!n: durch dt•nn dte. Garrldehnun4 w':ihrend des Shceuerns entsprediend der Anzahl (ler Stlleuern- zyklen, auf4ezeiidmek wirdL Die Hohee der Adlat- almnidk' kann dilydi die Slikromelersdlranbe4 t:er- slellt werden. Die HandhabungdesGerats wird dadurdlh erleichtert, daB es 1 uin 1 Idtnbrudc aulumatisdi abhestellt wird. Der Sdrerlt•rpruflpparat l.ann audi durdt eincn Qarnll.trannnatnr hetriclien ++Lrden,, auch kann sefn Cc dtwmdi~kulvhenidl dtudl. EiiudlaltunF cines V4idcrslandi stark crweitort Srerden. Dtes SdeLtdus•n k mn als gut lx•ieidinc•t +.a•rden:, +venn s dun Garn, dccsen sousll,, w+•rtvolhn Eij;rnstalaf- rul urnt rantlcrt. hh•ilien Inusscn, rime angemessenc Sillruvrbestiindigkeilt verle•iBt. Di,e•s.liiBt's sidr ruit doln in•sdlriobe•uen Apparat genatc ermil.lrln,, zumal man die C;iile und ifr•uecllbarkeit der ednzelnen SrhlidiPe- rezeptuicnn in u6jektieer 1w'eisur bestimment kanu. 4.3. Prii/mt;; rles I~eudni;;keirs~eliaPLc In diesao liell Srirdl zurrst', al:uGewidll. di•s Ptiiflings fitilgestrl7G Dyun .eird das G^turn inder (,em:4ff. Bfld if) gectiglen tVclw in.de•n Bululknlhrredt5\I':arcusscm- Apparats gehradH, Imd' mit! der vierfadle.n \Icnge• Xvlnlf dasmit Wasst•r gcs[ittigtist, iibergmscn. Nildl- dcmcler rVppanat zllnanmlougoslellt' .vordcn' ist, witd der I4idbon clektrisdi Gia znrn Siedepunl:F. en+iinnt unc4 die I•'liis.ij:krit sulangr gekncLt:. biss dass in di:m lenilx•n ktmdensien•ndo 3:ylol kci(se Wa.rsertrnpEcn nmlir aha•irfl, also, ungefiilLr 60 \linutrn. Ansdllic- Bcudl wird d:•r. Ap[aral nllgrkii}Ilt nnd redrgrl, .vurxuf dorim Samndrr. belindlid'IC \5'imscrgchalL in In] :rn.rlrr Sk:da ah}Sc1i•srn,+vird'. 1Der SVacsel,qch'.IJt {ir"'it w•ird.+riL fol};t heredinet: 1{;n/n.='A B ' IBQ •a ( ce5'ielltsabn!dlrm'„ d.,h. d:ls GewidR. de•s Wusscns g4nessen ini g, d:u in do!n llm'cussnn-Appamt. I,t s,unmeh curde• 10. Ge+vidH des oiu;CmcoGU+cre Nlnterialsin g. f\'cralcn 1(I(1;;drs.\f:lleri:d0 als Prlilliug cinMn:wngen. sn ec?;il+l cho %Llhl der itn Siunmhs Scfuudrnoro nlll ~ tnnminrlb>u deu r\nlril y\asxcrl;eh:rlt in f•ra'iduspre ..LI'tn'191. -7: f: PrOimt, . drs Eintlriu"'wlgx;;rrttliw (Pemdrrrtiun) Din'Durdulringung.cines C7arus nrit: Sdiliddre wird'.mit elrm, \lik!uskup gcpr/ift. I)nzu Scrrden Q1arm(uvr- sdmitte vnr6rreilvl, dinrnil enjspredusldrn Boa;;uu- aicu;lr.lk StGrke mil Ju(1) nugef(Irht wurd,'u. Inmauf. 8 l0 9 dicse Wt•ise die Einlagerungg der' Sddidlto im Garn- kiirpcr siditbar zu madlen. Schrifttuml4nru.R.: Dtsdiv f•ehensmim~llnduliau4fi.P95u1. S..20T. llaas, 11.: dl4inslurc unAl \Ip.inxlr. Slrafienhan, Chvmie und Teefinik CmbH. HeiJvlbrr5 1459. Pvrnnd. F:. c. r.., Ru.s, A. Sor. cbcnr Int. 67, l[9161: S. 4en. 11aUnrre~iq. R. il.: PFulu•rica u0 Al,qireatc. Alpina!e IndasaiesLtel.. Londum.19.5s. r:nit/i. /1.: Ulcd.n I-hmrsmitn~I Rdadcn, Jt (191x1. SI:'.3J. Yeu, R.: 3lidlra,rd TuxtIlbrro nl (In5n1. S. d4L. N.nndunoyrr. R..,Aii/J', 1'.: i6id..19 (193Y). S..51F. f:dfih•q Rt.r f:unrKridr u_ T.oll..ulll- ^-3 (191111, S. 2111 _ Somnerr.lr.: rNa.Pr(ilunc di:r Treliurn. :y,rtCC,.r-vrrlxg U9Nm: S. 7611. Mnmrr, rl.:.aeui:eml Tr.nlbrr. 37 (195111, S. Iall,. SMwde..( : T. t'I I~a n/19S1S Fr8 k rdq, P 5' B' u plbud, f r I•nuat dF Ll ru!nria.n. tiPrinFrr- Vi,rln6119fi(Il 5. LIS. Clred:, If }I T~. fl It I i . 5(11dn "iRl. Rntll, /1 \1 II 1'I'i~xt II r'. (19a-I)S. 8fi. Rnrh„II. ,\ 1.111. C::. d WI R(111.^). S. Vlad,, Ir Al. il II AIduni. { ll l,Irsudmng dvr Trmd(~sacrl ffc. Sj r 1a. \ rL:g IIJL~I• S. 15X, I'Irid,, If. ff..: 11"idhud, drr dumindu~n Unmrwdmng drr ToNdlu.e.anflb. SnNu;;rr-t'rrl!,v, II!lli•'I. S. 'It!1.. !!!rl, r•@ A I'lic. ( I . H(IJ.:AI: S^_iU lliln//dr R AYldlinwl T s+11, c a6 (11551• ti nh9. Ann : C,Indudrlr Tx•xtilr I nr5Sll 1. 545. Rlnnn.crilm, F,.:\IaFY. Toadlodm. li Ill)hl), S. 170. Cmertlr:Ann.6:Llnr:.N6cx,'_'1 (8)11). ti.d88.. Crdd.rr-Plnr..nn: Ind. P:nti: Cho,n. :tl (I:!H"_)I R! 11'ii. Stnrnu-r:. An.,•c Cornmir. Yoc. I I'. (1!lnft): 'I' .502 I'itifguritlcwrrk„ NI'rdingrni e.•n.•.. Is~.: R:: .{rd_ tahinx. 21 uaS2L s: 1135. Bild e. Ein gril aue Adnt rthcucrtdis C,, m e.. '. derCamedrun- maschinr. vnn gcv ! rArtnlRl ',pl BIIdl9 Ga nstilcu al tu~ I i. d: R nx / r Baingh.xn Pruln SaNancrfrsGgkrRr6• gesdd tht t Cn.• llund261 nnrrn, 9 Ach t: I- Ir. 4. Wxgen• 51ntmmetenchranbn; 5Tourrni561n; 7 Mirtoq 9ntr'iNm+- aplprm„91{e6nlnnc• gcwfrbtc Bild 10: Nfodiflzivrtrr / A/arcus- n-Appe . P"f gI Fru h [. IF ke•I[ 1 II: i.6^ setilid:mrrn Can~rht,I Alldl:. [ixLaLcre•.r Lel dl•r MLril. I lolr.uhnilt Mm )nLr,165a
Page 153: fiw68c00
M EEB New Formula- More Potent Than Ever A', part of.the xitamim. 81. and intrintic factor is now' presented as the newoK¢ial complex: Vita- min Br.wBh InlrinsicfaciorCon-centrate,. U.S.P.. Potent Speciali Uver-Slomach Concentrate; Lilly, remains as a major component in the new formula. Dose: I n any Ireata6le'anemia, only'2 pulvules aday: 6ch.pulrute providet: SGmil LivenStamacA Conaentralc. Lilly(Cca-^ lalnina Intlins/u f aclor)'. I50D mt Ylamin Urh witn Intrinsic. Factos C>ncentlatqU.S:P: 1I)nLS.P2 uNl (Otal)e Vitamin eis(Actinity. . Equivalen0, Furious Sulfate, Anbydruus Aseorbic Atid: 75mct. aanimt. 75 mt ~ Falie Atid 1 ma. ww.usr, unit e:iia n,neucn.,una,ro ~ ~~~"'...... ,.apenuinme,..,eeuneemoWMOUu rw 'nn.,a.u,oi., Supplied in battles of 60, 500, and 5,000:(No.2). n~ nql~!h eld: AMERICAN PROFESSIONAL PHABMAQIS7 Q ~ ~ Mail V aA M
Page 154: fiw68c00
•.md..n5dimmr- ,4 tdihAanollcl- , .• nutdrr :r.n•o r dra im Talol .1 siildl dir E'rp;ehni.vr aus 100 tidrauerprid- seerten jr Suldidtu•61'nr enlhaltr:o. T4del 4. Sd,em-r,nii0srcrte on SdrGrtlleliln.en Lnnt- Aonxentratiim Hururderllrfic Bennskw., Vn. ,. . Arbvirxum Ah. uhvurm dcsBlims. mpk Filme gibt eilydeutigem' nnd rlcfinierterc Werte als5 eiile PriiPung.geschlichteter Came:.Alk Beispiel seii die PriiPungeines: Starkefilms Hier liesdlrieliem. Die Herstellung eines: Films d'urdl EintrodnendesStiirkekleisters: ist cin kolloiddlemisdivr Vorgang, bei: dem~ der Starkekleister inethe Callerte vonn diffonnemSvstemiiberfGtirti wird..Eine 6detliodee der I{crstelRmg solduer Dlffbrm-Systemee vona disperser Struktur isti. daB KoIlbidlosungen, Suspensionen, Emulsionenn odcr Liogelsinentspmdrend'c Sdrictiten ausgegossen und eingetrodnet werd'en. Auf diese Weisee werden dann. difforme \erogels erzielt. Wegen ihren 1v1alH•erhiiltnisse sind die: Filme zur: Pru- fu»g viidl besser geeignet als die stildrigen Gallerten, die in ihren mechanisdien Eigensdiaften melir isotrop sind. Beim Eintrocknen ereigneni sidn im Pnnern der Callerte: Diffirsions: und! Sdirumpfungssorg:ingee kom- plexer Natnr;, die dann Stcuktunmgfei8lmafiigkciten und VerHarfung in der.stiid;igen Gallorte vcrursadlen. Filme kann mlann folgenderrnaBenn fierstellen: 30 ml. Staikekfcistcr werdtn auf einee mit PVC beded:ee200mm,X 600.mmm grof3e Clasplatte gCgossen. (PVCC witdl benotigt„uln den: Filmm olme Risse: vom der Clas- platte ahnehmen zu: konnen.): Die ausgegossene Sdridlt wirdl mit einem.Glasstah verstridlen. firad'.n dem Eintrorknen wird sie von der Glasplatle genom: meni und: 24 Stundhn in einem. E'ssikkator bci. 6.iu1°re1 Luftfeudrteauflxwalirt. Die konditionierte. Sddidlte wird. dann: zaisdlen. Papierbliilter mit' htilli:-metereinteilung gelegtt uod mit einer Rasierklinge in 1 mm 14reile Streifen gesdmittem. Nadrdemn die. Strei:- femdid:e an.melneren. Stellen konttolliert wurde,. wer- denn dieStreifen. in einer Sdrnpper-FaserreiBmasdlinc mi1.10'.mm Einspannliinge gerissen. Diese ReiBpriifun- gen: werdeni an trodenen wie audl nassen Filmstrei- fen vorgenommeu;, unr her•mszufinden,. via weit' die. Reifikndl dls Fiiure•s durdi Befeudltung vermindertt werden kann: Die SuhlidileOiImprlifungcn. 6ieten die heste Vert glvidunr2bgliLlikrit. fi4rr die ve°sdriedenen StJrliehlemit- lef. In T:dell3 sind tmtsprcdtrrnl6 Piiifergebnissn' dcs englisdlen Piodnlas hianutez (Nathiumalginnt) veran- sdhauliidlt. 8.2: Sdicuurpn7fhargcn'. 1)as Piiiferr der. Sdmuvrlrco-rliiudigkcitt versdtiedeuer StfdidrMfilme wuttle vom Aruon cul.rfda-Itt undd ers't- 7tltel 3. F•r>:c5nisscvon S.i.lirlubfilinprrrfnnFCn desenglisdmn I'rnLe- Ann- zci•r.an- Fillndirkc liuitl- Ilalic llrin: kraf4. Rri6- leeliFkr•il [tn'n, tmtion cmaM kp kp/cmr n5 2 0A0079 ' 0•01101179 0.0379 . 4..1 87 . n3' 4 0.00101 0.0110101 qnl~: Iw.7c l'k " 0,011.11`540011,115 O.1e21 -6,.1~ \'k 4I O.IMIITIC u.enn17f a.n±~ 1_r,5t c 2 a,Om.an' 0,0011170 NI1S.M1 ""IC.^A C 41 0.008?•7' I1,0011227 0,0599 911;,96 1:`4 : 401112111 ePIUlI51i I,N;_7 447.02 1:61 41 n,nn10U. 0•INw11Ie 11.1112 5S5,00 F F' L O,INIIVIS. 0,0011145 0,001M"-I 0,IIIIIIIY° 0,11641. n fq:xs 445,01 Jai,xf 0,906 ^.52' _;103 4;?00 I Fflmc arrv' ' F:nrraffclsl:(rkc mals angewendet.. Eswunde dcr Reibungsindes d'er Filme an Eisen. (a. = 0,24) sowic: dass spezifisdle iCesvicht: (Si: = 1,59) bestimrrrt. Die Varbereilungder Fihnprii0iilgee fiir die Sdicuer- priifrmgen erfolgt' wie unter 3.1..Ixsdrrieben. Das vor:- Ixreitete Peiifmateriaf tvia1:34Stmrden fang in einem Essikkatorbei li•i"/u rell Luftfeuahtigkeit kondilioniert, dunn werden die. Filtne an melireren Stellen gemessen und jcne vonn gleidur IDicke: ausgewahlt. Letztere wer, den dann in die Siileuerpriifmasdrine.eingespannt und durdi ver:fnderlidr bclastbare IClrmmen gegen den Sdteuelzylindcr gedrtidct Das aus den Taliellencrerten aufgettagetre Diagramm (RIId 6) zcigt, dv6 dieSdreuer0estigkeit mit derr I:nn: zenlration zunimmt, und: daB zwisdrea Konzent'ra- tionsnmahme und ScheuerLestiindigkeitt der Filme keine lincare Beziehung bestcht 4: Das Priifcn der gesdtfidrtelen Ganrc 4.1, Rei/3krnft ttnd Rcifidehmmg Die RciRpr:itfung gesddiditeter. Game verliiuft ent- d spreebend den Vorscbrlflen. der fiblidlen ReiOprfifun- gen. Die Rcifikraft wird iir Pond. (p), die Dehnung in °/n oder mm anGegeben ('Rdld 7). Die Reiflkraft von gesddiihltet'em Carn nimmt't zu, die Delmung dagegen verringert sidl im.Verhaltnis zu der des nngesddichte- ten Garns (Ruligarn), 4-2. Scheuerpsii/torgert Die ReiBprofung der ges¢fSlichteten Game gibt keiil vollsliindigesBild.uher.ihr Verlmlten hei der Vi•rarbei- tung indc•r.\VcUerei:. \adr Iletricbse•rfallrungen kann die ReiBkraflr.unahme durdr Sdilidrtenn nidrt der gplen: Vc•rarRcitliarkeit.der I:eRe gleidtgesetzt sverden. Die liedeu:ung,der Reilikraft ist geringer als die der Dehnung, da die 7irgbc•.ansprudrweg wahrend rles \Febens bei.sveitem niilrt.so Ludr ist als.die Ririfikraft des gesdrlicLtelcm Garns.. Dio wirksamkeit der ver- sdriedkrnartigrn Sdilidttemitlel benlGt auch nidrt in der Slclgerung.der Glarnrrillkraft, soudern darin, chtR °lle Lilsercndcu an die Carufl•udte'c gckl'ebt wcrden, uud dariu; daR das'Gacnn in. diesere lVeise k,'egliittl•t wird, dadurdt die lieiblurg herabgesetzt:und das G:un mft ciner Sihut>.flae6e umgrheu: wirdl Dies kann vnr- nrimdiiJt bri ch:r Vorathritung von'starken kvtt;;ar- nen Iknbao6tet werden (7.13.. iu der \VolIindlatrim), wo das gll•idrt•ICctlmnterial (Carn oder. 7.ivirnl iin gesddiddrdun %irslanrl be•sser crrwebl werrleu l::unn~' als im: tmgt'sddid6lcten, ol)w'nhl die RriRkra(t in hei-5 dcn Niillc.tri srlLr hndii ist.. Ans diiasenr.Crund ..itd die Sdmucrbestiiirdigl'r•it.zur.3 Unlcrnidnntg dl-r Sililid'drwirkaanikeit.llcniilzl. \R~ Illilfc der ShbenerprtiYmrg kiinnr•n nidrt nur mihlidl ' merhanisdle licx3r'idi};ungrn nadig{:sric.cen, snudcr,(3 aucL Sanderpriifungt`n dmdVgcRdhrt -werdhn. Sn rvtu'di: be•ispiciswoisr hrnl6adrh t, d`all Lei. Anwcudlmg cim•r groftcn Sirhliubtemmngc• Abseirr•ucrun}rirn uml De6nunt; des Carns beinafio (t wurden. Znr llrilfnng di~r SdreuerResl9urligkeit d'rs gesdtHd'r- tr•len F:arnsunrrdru mcllrore Ceritlh r•nhviokoh,, dlc jedods alle nur dic•-zum Rei6i•n alesCitrns 1Srniillglr• Anxald''.r1er Sdienerzyklcn.arneigen:
Page 155: fiw68c00
7 3;435,529 lan alkalinee material before it can 6eseleased..In such event, the release maybe concurrent with the: addition of - tfiealkaGUe:material due to.a washing.actiom In any case, . additional treating liquid orr watermay be.used to effect . the release throughah washing actionof thee tteatedd to- bacco particles. . In accordancewitk, the thirdd step of our process;., the liberated and separated tobacco.pectins.can nextt be.pre- eipitated orr deposited in a,relatively free form. (as com- pared with the tobacco-pectins as they were originally ' present in the tobacco.),, from the treating solution, for example;.y by beingg formed, into the insoluble pectic acid or into an insolublesaftof'pectic.acid or bytheaetion of a water-miscible solven~ . such as:acetone orxthyI alcohol to.causea water-solublesal't ofpeetic.acidf to goout of solutiom Inthecasen of lobatco pectin solutions such ,.as, solutions of sodium andpotassiumd pectinatess andLor pectates;, this can.be accomplished by. acidifying the solu- Gon until the pectins precipitateor by adding a~ gelation . agent, such asanlalcoholie.solution,•preferably.having.a ;•- -pH off from about I to. 9 and, preferably, fromabout I t~w5. The pH of the altoholic solbtion can be regulated by the addition of.f a minerali acid, such as HCI„to, the al- . cotiol. Although the preferred gelhtion agent isethanol, anywater-miscibley organicc solvent h'avingupt'og about 10 carbon atoms may tieemployed', for.example, a ketone, such ass acetone, or a diether, such as dioxane. Water- e immiscible solvent5:sueh as ether„for, example, ethyl ether, . can bee used,, if combined with a water-miscible: solvent, such as acetone. ..Z7re. tobacco pectinss can be recovered by concentrat- , ing.thesolution or suspension in which theyarey present s until theyprecipitate. This precipitate.mightl.also,tie char- acterized's as. an intractable mass, since the pectin solu- .-, tioa, upon concentration, generallybecomesprogressively more viscousuntils it. finaflydriesy too leavee a depositin _ a.glassysolidistate:. - . While the tobacco pectinscan be separated and pur9- fledi before usee as.s a.binder in reconstituted tobacco sheets, they arepreferablgemployed justl ass they are produced insitu; i.e., in combinatibnwiththe treated tobacco plant parts from which theywere obtained, the entirecombina- tion comprising, the binder for reconstituted tobacco ' sheets or,, under some circumstanccs, the entite.eombina- ,tion comprising essentiallg- the entire components of a , reconstituted! tobacco sheet. By using:the entire mixture, noo original tobaccoo flavors are lost, all off the tobacco is employed', and noexpensive.ando timesonsuming.refming operationsarerequired.. . .. Although itis.not necessary, the.thixotropic properties otl solutions containingg soluble pectins can bee adjusted in~the preparationn of a cured sheetbythe addition of such materials ascaleium chloride. Ifanycomplex or pre- eipitateformed ihthefirsistep of thisprocess is.present with thee soluble pectates,. the thixotropicc propertiess of the mixture can also be adjusted by adjusting the.pFffto precipitate ealciumm andd magnesium peetates:. A preferred preliminary step, in accordancewith the presentt inventionj . comprises washing thee tobacco pl'znt parts, which~arepreferably~ ground or cutw.a.relatively small size, with coldwater. Thiss water wash servesto removeimpuritics which might otherwise hihderr thee suh- sequent Grcatmenlss in accordance.with.the present inven- tion. Ib is particularly desitable to employ sucbh a cold water washing,stepu'hen alkali metal carhonates.aremm- ployed'.s as the reagent in thefirst'e step. Generally, suRi- cient waser should be wsed during suchh a water wash operation~ to.covero all.of the: tobacco plantparts.present. The tempcraturee of the water may be betweea -]i°' C and 100" C:,, butt is preferably about 20° C.,., and the water washshouldh generally continue for a pesioil of from aboun h.5 to2rA hours. Agitationduring thee wash is desirable, butt nott neeessary. After thee water washhas been completed, the water cann be removed from the 8'1 tobaccoo parts by filtration;4 decantationn orr other suitable means. As discussed above, a particularly preferred embodi-ment involves the: usee of an ammonium orr alkali metal orthophosphate, sucAh as diammonium monohydragenn orthophospfiate (DAP), for the release ofthe tobacco, pectins:.The DAP'will,,generally,be.addefl.to the tobac- 5 .` coplanto parts, whichh may;, for example, be bright to- baccoparts, burley tobaccoparts, or a mixture of the 10.0 same, in an. aqueous solution. The concentration of'f theDAP in.the aqueous solution:isnot critical; but.will] gen-erally,.be in: themnge of 0:5-5:085 byweight.'phe DAP' and water may be added separatelyto the tobacco: Thee amount of DAP' should, preferably, comprise from about 15, 0.01 to about'.0.5 part,, and, most preferably, from about 0.05 to0.35 pant. (by weight) per part of tobacco being.. . contacted. A humectant, such as glycerim or triethylenee glycol„ maybe present, if desired, at about 0.55 to I part per paatt ofDAP. The temperature duringg the DAP treat- 20 ment of.the tobacco may vary between room temperature: , and about I90°' F. or higher, depending:on the type.oftobacco being treated.. Under pressure,, even higher tem- peratures may beemploya The pH of'the mixture is;, preferably„maintained.at & value.about 7.1 to 9.0, which25 may cor.venientlybe accomplished by the addition to thee solution of' concentrated aqueouss ammonia. By. agitating or stirring such a mixture under~ the above~described eon- ' ditions for fromabout 1I minute toabou6 I day,. and; ., preferably, from.m about 1 hour tloabout 5.liours; the.to- 3U bacco.pectins.are.liberated, released.and deposited in the tobacco plant parts to form abinder composition: The.e resulting mixture may then be refined„forexample;, in a disk refiner,, untili substantially all the pulp. (in excess. off the.water present)'., canbe.shaken through a screen of ap- 35 proximately18 mesh. to produce a.a binder composition, . wlhichisready for use in the manufacture of reconstituted tobacco.sheets. The term."tobacco, pectins"as used througtiout.this specification means "liberated totiacco.peetins"'and.com- 40 prehends pectins.whichhavebeenfreed orliberated from .. tobaccoo andd are, therefore, not bound into tlietobacco~ structure, as differenliated f¢omthe.insoluble, naturally- occurring protopeetins; which are found into a plant cell . structure. The term includes the free peetinic or pectic 45 acid, ass wellas soluble salts such as the sodium, potas- , sium, ammonium„ pectatess and. pectinates;d andinsoluble -. salts such asthes calcium and magnesium pectates and pectinates depending on what methodlis employed to.lib- . erate and obtain them from thee naturally occurringin-50 soluble protopectins. The tobacco pectinss produced or liberated . in situor isolated by means of'this invention cann be used as the sole biadcr material for reconstituted tobaceo, i.e., nootlier materials meed be added to make the sheet. They 53 can be sprayed, extruded or cast, thusfacilitating.applica-tuon onto a moving belt carrying tobaccoo dust. Uhderproper conditions of formulation and processing, recon-stitutedtobaccod made with thee tobacco pectins . produced bythisinvention.y exhibit excellent physical and aromatic. 00 properties. The ultimate tensileand'e wet strengths of the reeonstituted, tobacco are good..Whilenoother materialsneed be: added to the.pectinaceous binder, otherr materials. canbee added, iff desired. For example,, organic acids and preservatives which may in themselves be of. tobaccoa5 origin, may be addedt Plasticizers, such as glycolsand.~ polryglycolsy and: humectanos, such as glycerin, may also be Q addedJ; if desired: In addition;, thee gcl strength off the~ tobaccopectins can be regulated bypartial precipitationN tocontrol such rlteological propcrtiesas viscosity, fluidity~ 70 and elasticity. Other additives or.dispersants may be added(ft in small amounts to rcgulate slureyingqualiAies; provided.N however, that such substancess are: not added in Iarged,J enoughquantiticsto adversely affect the flavor or aromaa ofthe.finallproduct. Furthermore, the tobacco pectinscan. 75 be.combined.with.water-soluble gmns.or waterdispensiblm
Page 156: fiw68c00
trations: Compatiblewithalcollol in moder-atee concentrations. Gives coarse emulsions. Chief objection t&muciilageis tharaprecipi- tate usually.dbvelops,on standing. About.on par with tragacantlih assuspendings agent. Requirespreservative. ,O Bentonite-A colloidal hydrated alu unnuuYm, silicate: Capablee of absorbing12' times its volume of water. Suspensionsares tann in col'or, havingg a pH of 9A.9;5,. Electrolyteshave a tendency to causeflocculation;e thee higher the, valence the more profound thee effect. If.an electtolyte.is added to a.hydrated slunry of bentonite,, increased viscosityre- -sults. If bentonitepowder iss addedtoa solu-tion: containing an electrolyte„ thee resulting suspension isthinner. Bentonitee suspensions arethizotropic. Produces good strong emul-sions. Excellent asa suspendingg agent. Non- toxic. No preservativee required.. {!eegum-Essentially a magnesium alumi," num silicate., AA white flake, producingg thix. otrupic whitesuspensiions. Similar to bento-nite inn many respeas. Acidk and alkalies have little effect on viscosity. \feegum is less ~e tensitive to electrolytes than is bentunite. Compatible with about 20~-30% al'cohol and 40-50% glycerin or propylenee glycol. Pro-duces good,, strong emulkions. Exeellenn as suspending agent. 1\on-toxic. Concentrations from 1 to S%e are recommended. Requiresnm preservative. 5odium Carboxy dfeehylCellulose-(CtifC) Ptoduces clear,, colorlesssolutionss of highviscosiCy. High,, medium and low viscosity grades are availbble..One perr cene.solutions have aa pH. mf 5L5 to. 8.0. Wil1.l toleratehigH concentrations of'f alcoholl without prod'ucinga haze. Stable in faiily- acid and'' alkaline solutions. Compatible withh most salts except Another in the series of'f historical paintings sponsored by Parke, fDavis is that of'the team of French pharmacists and organic ehemists, Pierre,Jos®ph Pelletier and Joseph-Bienaime Caventou who isolatedi many plant constituents.intheirv Parisian apothacaryy shop laboratory. But their greatest contribution wrsthe.extractione purification and manufacture of q;uinlne.and cinchonine from einchone (Peruvian) tierka [Vol. 20. No. 101 OC TO8 E8. 1954 ii
Page 157: fiw68c00
3,420,241. 17 18 arately regeneratingg the resinn with. hydrochloric acid. pectin had been..solub'clizedL The slurry wascasiat a.thick:- solutiona ness of 30-50 mils and dried to. form sheets. The binders In operation, fifty' poundsof'~ stems were plaeed in the' formed in this way were tested to determine their physical washing column and rinsed with cold water until they' properties. Thesee properties are shown ih.Table V' below. were nearfyfree of: water-soluble material. Thenlj the 5 Tltebinder was.used as the adhesive im.s.sandwich typeeffluente waterss were: diverted through the ionn exchangee reconstituted tobacco~ sheet.. bed, returning by gravity too the top ofstem.charge.. Whem the a ueous extract fromm one onnd, of buflC stemsl was' TABLE V.-PROPERTIES OF BINBCR, FIL17 MADE BYACID q p N wASn YROCESs added to the recycling waters,, ai pH of between. 1.5'andi . 2:0 was soon attained. During6he treatment, the waters10 E.ample-------------- -------------- 2s' ze 30 flowing from the,resin column:were'.monitored' for. theirr gtt--------------------------------- 7.1 7.2 711 calciumm contenti. (An appreciable precipitate from 50 mlt F~euuati i,u~~f~ei~t_______________ 4(~14 c9 Os oEresih.eftluent.tteated.withammoniumoxalateand.made [nteqratorcount------------------ -- 044 asa+a basic with ammonia indicatedl that the resin'~ was. sam- Per<e"t"`°t`tare------------------ 11.5 11.0 12.s P2rcentelmo5'+tion------------------ -0E .10 .10 ratedd with; . calcium and needed too be regenerated with yy Teame, kg.lln.--------------------- 2.52 20.3R:50 hydrochloric acid.) After sixteen hours of oPeration„and Te^sltaeo~ .ne;enr..es.nn.,sI R.. 0.165 0.53 . 0. 53 workeoeaicientNln.cmdsq,m----. L9Z aA0 4.92 one regeneration of'f thee ion exchange resin, the treat- ment. was considered complete.. Asubsequent. analrysis ~ oon<. vH,otl. 19%aKOII. showed that thocalciumcontent af' thee stem' had been r 15% Nu0[[. reduced taless than one-sixth of thestartingvalue of 4.5% 20. CaO:Thestemswererinsed'.twicewithcolddistilled.water, Inthelable.thetermshavethefollowingmeanings: pressed ligbtly;, anI redried in.a.tobacco processing.oven (p) Integrator count is proportional to the area.under to a finaC moisture content off about 4%, and ground to, the stress.straib curve recorded. by an Tmstron Test pass a40, mesh screem When a smalllsample of thispow- Machine:der was stirred with.h a little cold ammonia, itt dispersedg5. (2) Percent mooture~Thee percentage of moisture immediately; forming,a stiff paste. containedlin the entire sheet (weCbasis). The resulhing,material was then employed.as a hinder (3) Percentelongation-The percentage elongation, at for tobacco plant parts to formm a reconstituted tobaccoo breakage„on an,.Instron Test Machine. sheet in a manncrr simiSar to thatt described in Example 16; (4)Tensile,: kg:Lin.-Thee breaking strength of a 10 Example 26: 30i cm•test strip whichiis1 inch wide;.an avemge.of 1,Ostrips: (5) Tensilee coefficient-Kg:. per gm. oflf basis weight:.. Twenty grams off tobacco fines were washed in 1' liter (0)Work coefficient, gm.. cm./sq. im-Work coefh- of distilled water too geD rid' of the tobacco. solubles. ciendis proportionallto the product of the tensile strength The fines were then admixed with 1 N hydrochloric acid and the elongation: tmtil the mixture had a pH of 1.35. ThepH was checked 35 Example 31 on a Beckman pHH machine and the ccrveswere also.. •phe following ingredients were mixed.into:900parts of plotted againsG aa tittation of distilled water. - hot' wateeand heated for. 3 hours at 85°-90°C:,: maih. After liira[ion;, thee acif3d was washed off the fines with ~ining apH of 7.0 by adding: smaBamountsof aqueous three 400 ml. portions of.distilled.waten The.fines were ~monfa~ . redisbnrsedd in: 400 ml. of distilled water andsodium bi- 40, carbonate.was added to bring,the pH to 7'-The slurrywas• Parts castt at a thicknesss of 30-50 milsand! dried to form a. Mixed manufzcttinngbyproducts and scrap tobacco - 87.9 sheet and the resulting sheet wasusedas theadhesiveDiammoniunmorthoe phosphate (IDAP). ---------- 5.0 binderin.sandwichtypereconstitutedtobacco.sheet. Glycerim ----------------------------------- 5.0 Example27. 45' Corn syrup --------------------------------- 2.0 Potassiumsorbate -------- ------------------ 0.14 Twenty gramso£tobacco fines were washed io~ L.liter of distilled water to get rid of O:e.tobacco sotubles. The'. The siurrywas thenn refined' im a one gallon capacity fines.were then admixed with I N hydruahloric:acid until! Waring Blendor forS nlinutes. With this amount.of'refin- the mixture'e had' a pH of 1.35.. The: pH was checked on a ing, the fibrous portion of thecomposition was seen. to be Beckman pH machine, and the'e curves weree also plotted! . 50~ well dispersed and!thoroughly. interlbcked when examined against atitration of disti716dd water:, in a.droplet at a 1:9dilutfon. Thiss examination wasfacili• After titration, the acid was.washed off the fines withh a tated by the addition of'asmall.amount of Congo.red dye. 400~m]. porlion.ofdistilled water. Thee fineswere redis- The composition was cast on stainless steel panels with bursed'd in 400 mi. of~distilled.waterand sodium bicarbon- an eight inch.angleknife set for wet film thicknesses:of --ate was addcd1b bring the pH, to 7. The slurry thickencd. 55: 0.0200 to0:045 inch, and dricdlon a stcam table. to a,viscous mass, whiclih is evidencetliaD the pectinn had, The wet strength of the.filmswas-0etermined on a Scott beenn solubilized. Theslurry was cast at a thickness of SerigraphIP-2 using 1 incIr width strips. The center' of 30-50 mils and dried too formm a sheett and the resulting each strip was wet with distilled water on both sides and sheet was usedd as the adhesive binder ini a sandwicb-type allowed to become thoroughly wet through(30. seconds reconstituted tobaccosheet. 60 ' or one minute) before actuatingg the tensile mechanism Examples 2g-30. These films showed the:extraordinarily high wet film . strength of 140.gams at.a film wcightof 915grams per Inn each off these IlSree examples, 20gms: of tobacco square foot. A.higb.wet.strength ishighly desirablee in the ©, fines.werewashed in..lliterofldistilledwaterta:get.ridof. preparation of cigarette.fdlcr; and assures that the sub-~e the tobacco salubles. The fines were then admixed with. 65sequent manufacturing performance of this. material will I NN hydrochloric acid.untiltfie.mixture.had a~pH of.1.35:. exceed that oB the finestt grades of leaf tobacco. Such ~ The.pH was checked on: a Beckmann pHmachine and the: strength is uniquclyobtainable in the presence of the ~. ~. eurveswere also plotled'against tlie: titrationn of distilledd liberatedd form of pectihn describedi in this disclosure. water. We claim: After titralion, the acid waswastiedoff thee fines with. 70: 1. A process for producing, reconstituted tobacco sheet ~., three.100'ml. portions ofldisti0ed water. Tltee finos.werrs material which,compriseseontaeting'.comminuted,tobaeco redasburscdl in 4XMfmt0 of distilled watcrand a ncutraliza- parts with a trealing solnlionn containing a rcagent com- n tton agent, as'tlldlcated [nTableV, was added to bring thel prising anlmOnnlmm orthnphOspllatC so [tN to'destroy the p111 to the.vnlucshawn in'llahle V. The slurryin each case alkal~inee earthmclali cross-links wliich, hold the pectina- thickened', to :r viscous masswhich, isevidenee that the 75 '. ccous nrnterial.and thus occasioning.release of the pectins
Page 158: fiw68c00
C Table 3. Mobility and Specific Condu!ctanceofPectins ot O°CC in 0.02 N Acetate. Buffier pH 5.0.. _ Sample % Concentration Specific Conductance - ohm' cm'' Mobilif .(a Water-soluble ` Leaf Pectin '. 0.50. 0.0020000 9:0 X 104' 4tfater-soluble.. Midrib Pectin 0.50 0.0015108:43, X 10-"' Water-Insolktble : Leaf Pectin 0.50 0.000710 Peak(1)' 1.6 X 10-e . 0.000716 Peak(2') 4.5 X 10-'0.000716 Peak(3) 4.9 X 10•e Water-InsolubleMidrib Pectin 0.50 ' 0.000626 Peak(1) 1.1 X 10-• 0.000626 Peak(2) 3.5 X Il0•'0.000620 Peak(3)I 4.2 X 104 (a) Ua isJ the moEifity . in rnd/am. vvlt.. The arcendi»g vnfvel of Uaare reParted..riuetFey mere noF ~ipni frcanNy. dip'rnxt Jrom the deceendiwp boundary vulue+. - ~ Table 4. Intrinsic Yiscosities and' Average Molecular Weights for Tobacco Pectinic Acids, . . .. (±71 MwxL04 Free Pectinic Acids from ~- Tobacco. Lam.ina. 8.5 5.8 Free Pectinic Acids from Tobacco Midrib . 3.2 5,5, Derived Pectinic Acid from TobaccoLamuna Protopectin 2'.4 4.4 Derived Pectinic Acid from.. Tobacco Midrib Ptotopectan 2.0 4.0 Table 5. Optical Rotation of Pectic Substmnces: Average N t A N Concentration Tube Length e verage et Rotafion Specific Rotation Substancez (gms/100 ml) a (DeciFneters) Degrees i Degrees)', "Free PeetGnic Acid"'frorm Tobacco Midrib. "Free Peetinic Acid" from. .50 0.5 0.664 -1-265 Tobacco Lamina. .50 - 0.5' 0.669' -I-268 Pectinic Acid Derivedd from - TobaccoMidrib . - ProtopectirJi Bright Leaf Water-Insoluble ,50' 0.5'.. 0.615. +246 Pectinic Acid - Derivedd from • Tobacco. Lamina. ` Protopectiin ' .50 0.5 0,627 +252 - Conce.trution e.rperne3 in tenee vf wiYld of Cestinic. acid;. ux[aoetbd' far ma'utnre and ash. '(Tobacco Science 288) ity bridge was used to measure the resistancee of thesolutiom after di- alysis. The eell', constant,. K, was' determined by measurifigtheg resist~ ance, R;, of the celll conttininga pota.ssiumchloridesoluRion (7). The specific conductivity for each pectinic acidd solution was,calculatedfrom the resistance, R'... . Optical Rotation- - The net optical', rotations.of t'obacco pectiuicacidsc were measured by a method reported by McCready, et,al for the determination of citrus pectic substances (16). The methodd was modified.as to'.the.technique of pre- cipitating the pectinic acidl.A.Model No. 80 Rudolph Polarimeter equipped withh a filter to isolate the sodium "D"'lines,was usedL Five-tenthss gram pectinic acid was dissolved in: 75 ml' water. The pHwasH adjusted to values between 4.5 and 7.0 and the volume was adjusted to 100 ml'. The observed rotations, were them messr ured' over this' pHH range at.25°C. Thepectinic acid wasthem precipitated with acidified 95% ethyl alcohol' (0.05 N HCI ascalcul'ated from the finall mixture),, fitteredld and the rotation of the.filtrate was measured! and sub- tracted fromtlie rotation of the.or'rg iaall solution.., The netopGcal rota- tion: wass thus cal'culated. R'esulfs and! Discussion To obtain the least degraded.pec-tinicd acids, mildd conditions were chosen for the extraction. Aqueouss extractions were employed sincethey solubilize both.high. methoxyl pectins and manysalts of low-methoxyll pec- tinss and'd pectates. (20). Thee yields of.f free pectinic acid andthed pectinieaeid'derivedc from the protopectinl weree compared with the values for total. pectic substances obtained from.m the pecti,nase-carbazole method:.. Thee carbazole.method for measuring.totalg pectic:c substances utilized cond'ttionss muchmore drastic, and yielded'de-graded pectinic acids, unsuitable forst'udy and.characterization. The. aqueous extractions yielded 2.3% . "free pectinic acids" from lamina and 3.2% fromthe midrib. The pecti'nicc acidl derived fromm the protopectin off lamina and midrib was obtained in yields of 111.2% and. 11.7%d respectivel;v. Both pectinie acids fail'.ed too show any appreciable increase in yieldsomadditionals ex- tractions.. Table 11 summarizes the yseldsof pectinicc acids isolated by extraction as.compareds with the total pecticsubstances measured by the acid.carbazolemethod.. Our measurements of total pectic substances, as determined by the peclinase.carbazole method and mess- / f 4 ur sh, tht pe, rel 14. ha. po` cot ga' iso ha: Th bri pu frc wit of Th toI cor ara of det ph: no' 9 am ano aci. pho at aM porl fro. pec res mif hor pat Th, apo Ta I acit cen obs oos: bili the dro the not gen 7 weiwef Thc for tam, deg pec pec 215 gaL ealc wei is I
Page 159: fiw68c00
190, 2 ICer (aricnttalbako vor- n~ t diie Pektine be. nw os'- und Ferlnetnta. Ie dcm. Abbau, .nntaiisseuber das Ver- rbakpflanzen tuld iiber rocknung n nd I'ermcn- vicweit ein Zusaunnen- !,esteht. iluunung des GehaltesJ' nnlosliclie Bestand- - sowie auf die ester- s Verh5ltnisses dieser tte7t. Aus dclu. TaUak riJfte der vorhandenen ;l:id auf ihre' mittlcree stellt werdcn, da6' die ar zu ersehen, daB die ditine in den Blathern lbbisclien. T.usta ndder ftgr igersorterunaBigr icl~ oen bei den auf' Cabaken lieB sich der ,le und der Int'ensitat ]'esto starker erfolgte Iroeknaten und stalpel- -kul<1.rgewiehte ertnit- d'cs Tabaks und deirt h in einer Reilte von Irlaa. Aberr auch hier ni. Es konnten seder kc' noch an l).bensee- ~ren ilfolekularSroBen inc standbn iin.dieser 10G3,.21 TabnkpeGtineund'..dcrenT',infklfbaufdioTabakqunlitnt 261 l,fe0.9P1o~naH11)r O' IICnTnrlaV.TRflal:n 14 1rx. nYiUllOlel im 1(R9CCTIle TRj)alraIi..l7npmau It. B..DYon6neuraycp P'csrome 1 t ~ n es o ceo y~ec nes ln 1' on tobacco qu;ulit}• 1 J i IlponJaCa,Cmrltle 11ec:ICdonanun]tanH aualuln~ OG oGpaae. ]jetiCTBnii neliTlnn]D B Hrr etbnxpacTynptz pacrenun Taf;uca If 0 TOM, lcaa y.naaamn.rc nentecula~ npir cymHe IU IrepMCllTaqNH' Taiiana, uL'}teuGiH)acH. IlfpOnre Taro ]1c7ndPanacb, naCH9nbH0'. COCrOHTCnAa6 Aenrjty ](a9ecxnoJr Ta6anta ui 1rCITUUanrtf. Nccne;tonanuH'. pacnpocrpannwrcn no onpencacunee runep%franvn o6incli' raaalcry- poi]onOIY HIICnOTIa 11 110. paCTU0p11}i1ae.11 IICpaCTnop11A1LIC COCTaHIILre'iaeru-ncc Hbrancie/r- r20. HaH aUrlrgp,tjl PN.IaHTy,pOUOUOff. RHC9o9ra-n •rali8le na clloeamadn1p11oHa9ecrnCrlHae: Cnn94nnruel 61CTO1 Cltsl.inacrp~yllnl6. Hai ocnonairnul C60T110111~'Ir1111 anux. HenlecTH ;7pyr HI JgpY,ry GTCnC114 aTepllqIl]Fat{]rn yCTaWBnlunaCTCn. B0a\roSRllo: Gl.iplo If0'Ta6alra 11n0- nnponaT6 n HpafUleN cly9ac'To'JnGto nOnmoro OW1.Lme: 4CM nOnOlinllq• npHCyrcTnylO- H(n.x nerzTnlroH, HOTap1aCIlCellC}oNnl9nOR npo3le n0. ornomClluwH nS.crCneIIlCa'rOpnl~m- N.alUln 11 no OTHOmcunl0 nnx cpelHetl tleln1411110>10]]eUyn6L. BoaMOaalo 6h130yCTaflO- OIITn„ ar0 IICnTnnld Ta6arracoqAp3[aV alteTnaom.te rpy nnb6 . Ila: a OTRenbrloCTlf o6cl°a;~temaaxpoaynLaaron 6Ll.ro nnAHOy 'ITOIca'IeCTHC11nHe u, rro:rn9C2THCUIibSe 113AICIIOHIIH neiRIlnOB n.l.I1CT6HJi pOCTyfqeropaCTCHIfH B OCI[On11UM~ 3alfnCHT OT 6noH.Orn9eci;oro CoCromnrHerICTJien npH r a%H1pit nO)tHe n MCn6111C HO. oT-uolaeuuw H copranl o6yeaon:lemlcl. Ilaa ocuonarnnn upanaueaenuLrx, ncr_~e;tonalmfr rrpun no'paaHbrN M CrogdNllcymCllldx n : ~llep>ICUrupoaalnfl.lx Ta6axax no3d,oH::n061ano.yaHar6 CHHn6 51e>RAy 113R1CUCIl11C'1'. nehTn110D I1.3/HTCI]Cnni]OC'rbxl o6paGornlr. clesl Gonce I/H-Tencnlanan 3Ta 6raIIa,., Tenr CnnLHee: nponcxoAUno ]lenllOe pacutennellne nCl:nu1o9',. Tan '1roycTanonnnn apH.Ta6awax, oymclnlslxn unca~icst COCroeuiuc n~epuen2lfponalurax HanraSenHx,.Caw30 Hna~mle Cpea}/Be ewaeKylHp]Dae liec46 Orno111eHne 111CH.ay ua9ecr- BoM Ta6aHa.n CO;J,epa;aluleM neHrnnon ne yCTauOUnTn„ eCn'..u n.at pfl,te Cay'Iaee cy,ilte-. cTHoeaan o6paTnoe eTHOmenae.+lexaAYo6memn. DIo n 3aec6 no~ly.vn;mno 6oa6unefi. vac•r11 TOn6no ata7onadiHiae orHTOUeHnH IIIC nplr nCILTnlraxopllellr2luCFnx Ir Hn- Ta1SC6nx-suprlu[C] UA Ta6alcon 10l npli 3aOl;eallcBNx curapntilx-Ta,iaRax ]IeyCTaflonHalC. xa~paHrepHLrx paa'm nlfi O Cpej{unxix nC.~rlunHax Fro.ieHy l.. IIeHPluna, noRyYOlntbte Ifa'. - nCpnLlx, He yCTy.naroT no. Na9ecTDy noC]IeAtiHJi DI3TOr oTilomOHnrf: By C. PrHtHC and 1V.3tor,neslraus:R . . , SironnrarJ . Our studies resldtedlin knnn$edawsorn the behavior oflpcctines'iin the leaves of grox•.ingtoliacea plants and theit modificatimiss during cming and fernrelttation' prrocesses: F• urther- m,a a~e.tested how far there Iras'a relation ofitobaeco qualltyand peetines.. NT~he studies included determination uf tlle total galachuoneacid~ content xnd its soluble. andinsolubl'ecomponents- each calculated as galncturonee acid anhyldrid~- nswroll as. the.e esi.erlikee bound methoxyl gronps: Accolding totlmo correlations ofthese substanccs, thedegrece of estcrificntion was deterunined. At.Best.mily little merer.thanc half.the.Pectinesf present in tabaccolcoldd be.isolated, whieh were subsequently tested for their degree of esterifiention as well ustheir average molecular size. It could be established'that tobacco peetines contain.a:cetyl groups. . . From'the'severnl resultsit rerealed that the qualitative and qnTntitntire pectine mu- difications iit~ the. Icares of'~ thegrowing plantdepend csscntlially, an t71e biolugioal state ofthe lr•aa-os~,iritliin cach pniming stn.gq andlexs.ond the tobacco ty~ne. 0ir the basis of our Sfiutdi o t ba ti td' ttoeiriufl''ucuce 11 i
Page 160: fiw68c00
3,420,241 13 14 Ilflerr a, very short period inthe: blendor, the mixture was Example 17 conveated to a viscous, fine,, impalpable slurry; wherein. the tobaccostem.particleshad been emmpletelyseparated. Burley tobaccoo stems were washed in cold water where- tounitsof'cellulhr siae. This impalpable.masswas suit- by, from about. 75 to 80% of thee natural content of able for usease a binder in, reconstituted tobacco. When 5 water-soluble substances were removed in the wash.waterth remixed with some af:the cold water washings removed in The stems were then driedd andd ground and used too make the first step, the.impalpable mass immediately became a.binder as follows:: viscousand,eventual(y jelledd toI a soft mass. One hundred parts of water were brought. to a tem, For further comparison,, a similhr sample of coarse perature of195:' C.,.and too this weree added: ground bright stem fines. (30 grams), wasdispersed in boiling.water and.cooked for about 30 minuteswith.three10 7.00 partss by weight (dry basis) of the washed burley grams. of diammonium monobydrogen orthophosphate.. stems, The pH of this mixture was brought; to a value of 7:1 by 1.05 partss dlammonium phosphate, and the addition to: the mixture of'. 30% aqueous ammonia.. 01 part o(f glycerin, as aa humectant. Thegranulesoftobaccocould(henberefinedtaapalpableIS Concentrated aqueouss ammoniaa was then added topulp,..simi[arto:the soft mass produced inn the experiment bring the pH of' thcmixture too aa valuee of att least 7.1 described in the first part of this example. but noo higher than 9.0. Example 15 The: mixture was then stirred for one hour' andi sub• Budey tobacco stems (54, . pound)) weree covered withI 20 y9%e ofythe polpnu ( ndexcess water)raouldi bet shaken distilled water, allowed to. stand several hours. andl the{hrough an18 meshI sieve.. water decanted. Thiss step was repeated several timesThe: resulting, material was then employed as a binder and finally the. stems weree covered I withh distilled water for tobaccoplant parts to form aa reconstituted tobacco conlaining50 ml: ofconcenttated'~.HCII and lef['i ovetnight.t sheet.in a manner similarioIthat.described.in Example 16. at 24' C. 25 After standing:overnight theacidic water was decanted' Example 18 and the stems washed repeatedly free of'HCI. untill the wash.water gave noo precipilatee when treated with silver Burley tobacco.stems.were washed in cold water where- nitrate solution. Thee stemss werethen covered withdis- by, from about 75 to80% of the natural content.of:water- tilledwatert containing 15 grams of sodium, carbonate30 soluble substances were removed in the wash. water. The and left.overnight.at'24°'C. The.pH of'the sample;.the, stems were then used directly in the wet condition to following morning, was818. Thee stems were swollen andl make a binder ass follows: sott and were easily disintegrated with the fingers andi One. hundredd partss of water were brought to a, tem-the mixture could bee homogenized and employed,., as aI perature of 195° C:,, and'lo this were added: binder in reconstituted.tobaeco. 35 7,00partsby weight (dry basis) of'thewaslied burley Example 16 stems, The apparatus employed in this experimentt was.lhrge. 1.05 parts diammonium phosphate, andd scale equipment,eomprising:a 200 gallon eonieal.bottomy 0170part of a glycerin, as a humectant. open.top, stainless steel tank, fitted.with a.Cowles.high40 Concentrated aqueous ammonia was then added to stiearmixern • bring the.pH of dllp mixture to a value.of at.least 7..h Onee hundred' and f8rty.eight gallonss of water were but no higher than 9:0A placed.in the tank and heated!toa temperatureofl207° The mixture.wasthen stirred forone.hour and sub- F. O'nee hundred'andtwenty-eight poundss of' bright to- sequently refinedd in a disk typee refiner until better thanbacco (milled to, pass a 66 mesh per inch sieve) stems99%. of the pulp (in excesss water) could'd be shaken were addedi while operating the Cowless mixerr at a low 45 through an 18mesh.sieve.. - speed: Almost immediately after thee additionn of the to• The resultingmaterial'g was then employedd as a bimder bacco,, nine and one-quarter poundsofdiammonium for tobacco plant parts tbo form a reconstituted tobacco monohydrogen orthophesphate (technicall grade) weree sheet in a manner similar to that described inI Ezampleb added to the mizture..Ammonia.(assaying28%, by weight: 1~6 NHs)I was added too adjust the pH to 7.1. The mixing 50 speed was increased'd to~ 1700 r.p:m., Afterr a periodd of 3'Example: 19 minutes thetemperaturee of tfiee mizturewas 194PF. Burley tobacco stems were wa,hed in cold water where. Mostof the.particlesin the.mixture were:softenongh ta.o be. smeared by hand and fhemixture had a jelly-like by from about7S to.8056 . of the naturalconten[ ofwater- consistency, Themizing was continued for II hour to' soluble substances were removed iit the washh water. Tfie obtain.n the highest possiblhstate ofdisinlepration, al- 55 stemss were thenn dried and ground' and used to makee a thougHa 15minnte period appeared to besuflicien4 forbinderr asfollows: this purpose.. One hundred! . partss of'f water were broughrt to a tem- The: viscosityy of Ihe mixture wass fonndd to be 10,400Perature of 195°C., and to tbiswcre ?dded: eps. and its solids content was found to: be 8105% by60 7•000 partss by weight'. (dty basis) of the washedl burley weight. stems, This~ mixture wass then.n employed as a.a binder, lieing, 1.055 parts diammonium phosphate, and pumped through.a filter tostorage tanks and subseqpently' 0:70 part of Iricthylcne glycoll (TEG), as ahumectant sprayedd on totiaeco by thee mclhod' and! equipment de-seribed in U.S. Patent 2,734,513. It was applied att the. 0J Concentrated aqueouss ammI was then added Io. Q, rate of 3 grams per square:foot•tof'ormareconstituted, bring lhe p1i of the mixture.to a value of:at least 7.1 Q, tobaccoo sheet having the following physical properties: but no higher than 9:0:. %] gms./fITP9:--------------------- 10.2. Basisweight llne mircturee was then stirred for one hourr and sub-N. , Moisture content (percent by weight)___________ 13.00 . scqucntlyy refined in a disk type refiner untilbetter th:mo -1 . Tensile, kg:/in: ------------------------------ 0.82 70 99% of the pulp (iin cxcesswater) cmdd.be shakem /in. Fold tensile ------------------------- kg 0.82: through an IB meshsieve. C~. - „ , Work-to-break, gm. cm./fL' (2) ________________. 16.0 The resulting materiall was.s then employed as a binder (A + Welgl.t oP nIL tlm. Gigredten[e;.IhcluJtng. ttiLUCeopulp, es-fnr tobacco plant parts loo form aa reconstituted tobaecno eontbatx tr.,, nr nmintnra. shcct in a manner similar too that, d'cscribcd in Hxasnple. +CnumutediLxanfategrutorattnchedtotlvelustrouTCnsl{e 75 16. Teatar•.
Page 161: fiw68c00
. . «dJicc~~u~. ~~ . by Charles. H. Becker Amociote. Professor . Uhiversity~of'plorida'__.. Cdlege~of' Pharmacy'6einewille, Wa. A LTHIOUGIP information isavaillable on many of'.thenatural and svnthetic thick- ening agents in pharmacy'books and manu- factarers' literature, these.sources of:informa-tion.are not.usuallgfound in drugstores. Phar- macists often times usee suspending and emuI- sifying. agents, especially acacia„ and noo doubt would usee some of'f the newer ones if they knew more about.themand where.they' eould beobtained,. It wasfeltthar suchh in- formation as c8emical'' and physical pro- perties,. applications and'peculiaritiesof some: of the commonly usedand newer . thickening agentss would serve as aa source of reference: and would be of value topliar- macists. Disadvantages (a) Namral'' gums contain, in addition to the swelling constituents: enzymes, - impurities, and othermaterials.usuafly found in plonls. Becausef of tlii~s they lend diemseh•esto more incnmpati- LiPitie.c:--witll mm anuther and eren withsamplesofh the same batch gum, pVoL @a: No:1971OCTOBEg> 1951'. i .- They' are more apt to be lesstolar . ated in the presence of acids, alkalies;, salt's„moisture,, heat, etc. Most natural gumss lose their strengthof' thickening .. power an standing.. (b)~. As a rule, solutions or suspensions. -require a preservative to prevent' fervmentation or.r putrefaction. (e)i Some natural gums are. difficult to hydrate or put into:o soPution: (d). Irisli moss usuallyhasa"fislf-like"odor in solution; Karaya gum. if not fresh,., develops a "vinegar-like" odor. Thesynthetic.thickening,agents, sucbas CMC, Metliocel,.etc.,,do not possesss the above disad~vantagess but do have some disad'vantagesindividuall to the partieularr substance. The usee o6 natural gums has a sellingg point in ~' that it is of natural origiu, rather than. beingg synthetic: Advantages(a) The naturall gums seem.m to produce a variety of' typess of'viscous solutions. or. suspensions which give the user aa choice to select. This is important becausee some userss off thickening agents want a. very.' viscous solution but not a sticky one. Others may look for a thin.solution, but yet have a.0endency to geh att certain tempera- tures. Stilll others, may. be looking for a thixotropic phennmenon; and so on.. The synthetic products appear to: offerin the main one type of hyd~ra- tiort-the: more you use,., the greater the vi,:cnsity:(U) Synthetfc gums: oBer. rfrl 07 t I USED 1N PHARMACY , There are numerous new typess of fhiekening agenfs available today in addition to fhose whieh have been used for many :. yearss ass suspending and emul+ . sifying agents. - uniformity in O 999 0 ~... ~ t1l
Page 162: fiw68c00
1, Leismr,utie triukt, dLe vcird er nrit I(M/xij;t•r ICupfc•r- hun;. Iu dunr¢ r. Leinuig, ist dicsc Ilcaktion sehr faug- .ull%ulr..un>, Iretriinfi IF, ..r.r.mf, or I his "_\linutcrr iit .aur; dcslmlh r.t't t c rals:un, rlic Priifl.isung vnrcrst'.cin-c•iiu+rr'1'rnrkru.du:mkIn-i' I(Ifl "C:gvthnv{inr•t .vird. Dic audampfi•n: Dt•r Unlcrsrhit•d Ixmii dc•r PriifurtgvnnF:rtsiirnnung vrGi61 rint, t{iorlettvr•rOirbtui{;. Dii Prii- Pnikvinyl'alknhol unrl Stiirke ist clrr,, daR crsteres efue fimg Gar~n audi mit viner sdnv:ul, alkalisd6•ro Liisong griinlidl-hhuteund Ietztcres cine inti•ntiv'blaue Farbe de•r gcsddiditr(•v Ti•etilprnhi• dnrdrSrfiihrt werden. zeigt. Milluu-Rragcn.n, I17.3'. CerLsliore IJas tiiddidill•mil'ti•I wirrl' miF sdnaadler SndktliisunG Dcrr wlilli.igcm estrahicrlen SdrliNnelflsuttg: werden l,ndi4sC und, tiltrit•rt. -l.it dmE dc.c iriltrats werden drei 8^/uij;c. Carbsaurrtrupfcn zngosetzl. In Ct•genwart' von his vicr Tropfen NIfllon.ReaFens. zugFSetk.t;; dit• Pul)•v~invl.rlknllnl wird die Liisung: sdrwadr, undi in Prubewirdl dann I hf~inute•. I:mg crwiirmt: Ess zeigt Anvvest•nlreit von Ze•llulnsclilheq Leilm n. a.. ciwei0- s,iidr rian• msa his rnte Vi•.rfTrbun„, jeefodi ohne A'us- artigen Sc6lidrtemittcln wird sic stark gotriilit:. P511ung. 1•7.d'- St3iaumin'olx 1.4.4. , Fchlingsdre Liisnug Die w5ffrige Liismtg dcr Pbllvinylalkohnlsddidite. Se'liuadr alkafisdlr Liianqqencnn Le•im- mnl Celatine- sdtiittmt, wrnn cie nufgesdliittelt wird. Audihei Zellu- sdllidrtcmilteln wertlen hei Enciirmtmgdurdi clfec hli f L I f l fnseathersdilichten zoigt, sidi dasSdiifumen, dotfin ng.ac Fe te. iisuug ciiilettl> amver iir rL diesmal viel stiirker nis Irei Polyvinylalkohol.. Andere SNduhten sdriinmen nidltL l..i. R'udrtseis ean ril+uri;;Vrt Sdtlfdlremirtehr . 1.5.1. 10"r.ige Na,CO;1-Ldsnng 1.8. . Nnducei.v cnn Dektim. Der PniOing.wird In SixlalidsungirnCegeuteart einer liS.I. Bariumhrdrorctdprnbc ~ \i l di " • k d I d d gcrin i n cnge isitive ge Sa o it. st e $d i rteDusYriifimuster. vvircL hii; zu einer haRben Stundr• in 1 ].5:?. ll/P^rgr :5:ittriumsulfidosung Der.waBrigen L'osnng vvird dann etwas Bariumhtdro- In, Ccgenw:ut vim:Leinol vcrfiirhtsic}i die Prolit• nadi •,aYdliismlgzugpsetzt In Alehangigkeit t'on der'vorlian- Rtaun,. . denen Pektinmeuge Irildet siHr eine .•Yusfiillnug cro . - sdtwadr gelblidier ffarlre. u Lii tr P . i . 3 . S u d .n - 7B semg l - olurUti. so Lddet sids cine olige Anssdieidimg... etnem Oll`C hia$0.°C warmenR'asserhad liehandelt.~ tlann fiir I:tilinute in. dieseLiismng gelegt; ansdrlie•Rlcinzetat. zugesctzt Darauifhin bildet sidi eine starke Rend tcircf siv mit Re•iRenn Rrasservr gewasdren undd weiRe:lusRillung, die in.Essij;saure gelost: werdert g[•trncknet. Fineiilartige Stfilidttc verflirbt sidi uadr kann:. In 1(f ml Nlet'h,mol wird I g.Sudlmrot.gelost, ntit.R'as- L8.°3. Bleiazetatprolie ' sen aut; I I aufgufiillt und f(Itriert:Die Priifproliewird. Der wiifiiiqen Sdrliditemittell'osmrG wird ciir wenig Rot. 1.5.4. Die Ilerzag-Pro6r Zun5dtst't tvirtl ein 1Sedmrgfnv mit R'asscr gcfiillt,.dannwird auf cfic \Yasserfl5dm eih. Stikkdten', Kampfer gE•legt d':es in, einer Leisdrpapfe rfaltezerdrGckt wurdt•.;.% dlre.s nrdn mit den 1 ntgern 6ernhrt werden dnrE.lJer Kampfer sUrl sidf in cine lehhtfte &reiselhuwcgung;, die jcdodt pl8tzlidt ahgelirodren wird, wtnn geolteEasern ins \R'a.sscn gelegt werden,. L5: Nirdnueix cnn 1'ulynerUCs'dtlidathn 1.G.1• Katiunakticc Stnffe Eihe °nfnige ev9Rrige Liisung cines kationaktivemHilfs: miltcls ('z. BI Lewogen WW) wimd tmpfenmeise der auss tlrr Probe extrahierlrn Sdrlidltemittelliisungg nnten stanrligem Sdtiilteln zugrgt'hen: Einesdtw•adle Er- u'dnuong hat. cinr-viceiRe Avxfiillung z.nr L•'nlgo-.. Diesc Ri:ektihn vricdcrholt sidr anch Iwil 7.i•Ilulnse-Cll'kulat- Sidtlidrtemitlt•In. Dmu anderen Pfnlierrtt•il vs~ird ]On,'niga. Salzsiilrra zugrst•tz(y darauf Uildtt sidi ausdv-r freicn 8cdas:ilwrc•.inc %veilSc AusHillung. Ari Polymcthaerylat,, jeehxft nidrt Iiei ZeRtdiese.-favkulat 1.63, 1'cupfantdfhtliimnl,q . Dcr ans eint9u C:un estraliierten Sohlilldvlilsimgw•ird IO":5,igr I:upfersdfitlllkuu;; zus;csc•tzt, dns'Rihrt zu t•irrer vvciRvn~ Ausflillung~ dic• in E.xigsiiurt- unlii>fich istl (1)ieauf?ihuhdir Nfeise erhaltenem. Aurf-liflungon lrei '/.cllulosc-Cly:kula[.Sdd'iddcmitteln. siud'(Ihgogon in Lssi,gsiiurc•.liisIidr.) . 1.7.. Nirduccix canl'u711r'inrff+rlkuGuLvdtlidile'rr 1.TJ• f erbx:iuru-lClcenddorid-1 usymg, I7ar,( munudcr vvnvl ?I\fimdtn.iir eine5°'ni4c Ccrh- siitucliisuug gebmdi6 daun tt•ird cs`mit t9assor 12 \linulen I:m4.gvwasdlrnl sddicOlidt legt uran es. nodl 1 \limdi• in:.cine1"~nigerFiscnddoridf.isung RciiPnh'-cinpl:dkuhakddiddt•n (z. R.. \!inarnl) rcrfiirbt sidi tlieLiiznugiirtrluie liltitllii:h.sehvvarr. Dio Reakliun vrird von:.stiirke•- udt•r IciinartigrmSilJirhlrugrstiirt. 1i:?'. Jadretktiam, PulCviuvd:dknliuI gilrt mit JhdLJndkrdiFLiisuut;' e.inr bhmc \'trifiirbung; iilmlidt w'ie hci',ciucr Sllirkcreak- 1.8.31 Rutheninnrrotp'rnbc Die Ptiiftntg enfolgt. am cinem Mikroskop in der 4V4tisel, rla0 dec Garnpriifling auf einem O)bjgkttrager gelegt und mitt einem Tropfeu Rutheninmrotliisung 11etr:iufelt tvird'. Im Anwesen6eit von Pirktinn erfblgt ermeintensive Verfarbonh: (Diese Rtaklion wird auch von tilarligen SifJiehtemlltein sowie .-onC11C he.•rvor- gerufer.) Bereitung der Rirthcniummlltisnngt 0,0? g His 0,0.5g RtdheniumrobFarbstofd werderr iu 9m1'dcsti3liertem 4\'asscrgeBisl, dann vverdcn ]Iml Athylendiamin ttnd 1'Oinr! Clyzerin zugesetzt. 19. Nndirceis tan Stnrke. 5g Kaliumjoditlwerrlen in 1111tml destillierlem. \Nas- ser gel8st, dann sv'irdunter Sdtiith•liul g Jod zugesetzt. Ein Tropfern dieser Liisung.vvird aufden Priifling ge- Uradrt:, ReiYnrlinndrnsein von Starke. (bzx'. von Sttirkederivatcn) w'ird cinv ihtensive blauc. Y'erfarhung walvgouummen. Dastrin verfiirbl sfdr riitlidt-braun fiis viid'ettblau. Audr 1PolvvihylWkohnlsdtlicLteo gelien diese Rcaktion,, cl,odr mit einer starkon Cn(inlidt6lau- verfai'}+uug: 1'.]!l. .Needl rccis. r:nn Cl gari n Dic Siadidrte wird von dbm zuu priifend'en Carn mit \\raxsvr in Liisung grliradil'. 7,r 10in1 der Suhlidite- millelliisungwiid Brtanwasser zugesetzt: tmdi snlange im \U:u.crr6xd erwNrmt• bis sidr die Liistmgvilllig errtfifrht. Danu wii'd 0,1 ml 5"/bige nikohulisdtr Resur- cinlOsnng zugesctzL Q:iLI. man nuu cin Camisdr :rus ?~ml drstilfierlmn \9aser und :ml kouzentric•rler Sdiwrfrlsliurc in''_ml der vndicr crhafteuen i.6smlg, snzcigl 5idr nsd+, kuraer _I':nviirmmrg~ im lF'asserbatl eiatc lilaurolr.•\'crfarbuug.. 2:. Dtts.l'riifen vnn Schliditeliisungen _^:1. tkilfun;;rn rler Trord'errxub.vtnu- ?111.1.. Q)raviYnetl:isdle hlotlinrla. liim• 1'rula•vomLoxlimmlttrr Sli•ngr• avird aus di•nr zu prilfendin S1ltterfiil cntmmmurt mrdl Dei 10a.°C his zur Caridrtskoustanz getrmf:nrt::4ru dcr Cewidh's-
Page 163: fiw68c00
Ic C The washed lillhr cake from, the preceding step was sus- pended in 200 ntl. of a 0:0/ amntonium oxalate solution andrelluxed for1i6 hours. Tlie.mixturewasthenfiitered, as.beibre,and the filter cake was washed withten.50-m1h portions,of Uoiling:distilled watcr: Tite conibined lillrates andwashing.. (frac tion E) were made up lo a 1-liler volume with distilled water and subjected torthesante analyses.as fraction C. Calcium Determinatfon.. Thee calcium determinations bythe chloranilic acidmethod (Glick, 11963)) weree repro• dbcible with ann aocuracy of t4,, and the. calibration curve was a.straight line passing,throughg the origin for the concentration, range used. Galacturonic Acid Determination. Thee determinationn of galacturonic acid by thrmodified carhazolkmethod of Bitter and Muir, (1962).was..reproducible with an accuracy of ~L5%, the calibration curve was a straight line lhrough~ the origin. Two potentiall inlerfering.g substances inthesematerialsn could affect the accuracy of the galacturonic acid.deter-mination: other uronic acids~--e.g., glucuronic-and sugars. In.fact, Bitter and Muir(1962).reported that 60 µg:. permlr of glucose will give a carbazole absorbance equivalent to 8 ug. per ml. ofgalacturonic acid.. Thin-layer cluomatograms of the fractions containing galacturonic acid'showed no evidence of' glucuronic or anyy other uronic acid.. The: Rr: of glucuroniec acid: in the thin-layer systermusedd in this investigation was sufficiently differenl'.from that of galacturonicucidltobe certain of the absence of glucuronic acid' in.anyof these:fractions. The: effect of monosaceharidcs .. on thedeterminatiom ofgalac- turonic acid by the carbazolee method has been examinedl (Table I). Most of the earbohydtatee interference is's eliminated at concentrations below 20.µg:.0 per nil., Kutx', (1959) has reported.that.galacturonic.acid resultsmaybe in. error as much as 7% relative, owing to interfering sugars,. andd basrecommended the use oftheabsorption.measurer ments at.430 myp with an appropriate correction of the results. The:results.reportedherehave.notbeencorrected, but rather all of the quanlitativedeterminationshave been: made at ooncentrationsbelow20 ~pg. per ml..of galacturonic acidi. This minimiies,, or eliminates„ anyy possiblee inten-ferencesby lhe:simple monosaccharides. Thejustification for this conclusion, is based upon the fact that thesume total of the interfering.sugars did'.nott exceed theconcentmtiom of galacturonie acid. In making themeasurements at these.lowconcentrations;e thee potentially interfering,sugarsg were:at levels.whichdo.not conrtribute.significantlyto thee absorbance. Thin-Layer Separation of Sugars.. The composition. Table 1.. Absorbance of Carbohydrates by the Carbazole Method AbsorHance (530 mr) at. Concentration of Carbohydrate 40 µg:/ml. 241yg./mI. 9.t.g./ml. Arabinose 0.A27 None. None Galactose. O1087 11.045 None. Glucose X i 0.123 027' 0 0.062. None None. . None ) ose. R'hantnose. Galacturonic . 0.002. None None acid 0..509'.. 0.250. 0.100 1:05B J: AGR. POODCH.EM. of the freecarboliydrntes.and the cnrboliydrale hydroly. urtes were dCienninedl usiitg plhtess nmde witti silfica gcl GG impregnated with a 0:02h1' borate bulTer of pH 8,0 (Jacirt and; . Mishkin,. 1965). The sugars were.applied to the plates and. tlte latter were subjected to ascendingg chromatographyusing a1-butanol-acetic acid-waler (Sc4:1)solution: After double.development.in tive.samc solvent, theplateswerc dried, sprayediwith~ 1-naphtholsul• furic acid reagenty6 and hcated at 100°'C.,for 3to 6 minutes to . ntake t he spots v isible. RESULTS A.ND DISCUSSION Fraction A. These fractions contained, among ollier' constituents,., the free carbohydrates. Thee thin•hyer' chromatograms showed that most of thrfree.sugars.wereremoved.afier three extractfons.. In.no iiutance.wasdhere any evidence of galacturonic acid, xylose, or rhamnose in this fraction.. Figure.2 shows aa typical thin-layer chroma~ tography. plate of the 80J. MeO1H washings from Turkish and Maryland stems. Table.Il summarizes.s the amount of 80% methanol ex, tractables in the various tobaccostem types and also the relativeamounts.of free sugars: There were considerable differences among the.fourcigaretle tobacco types (Bright; Burley, Maryland,, and Turkish)') in thee quantity of the extractables,., with a large amount of extractabless being, ann ihdicatiom of a large amountt of free sugars. On thee other hand,.the four cigar tobacco.types.(Pennsylvania,. Puerto. Rican,. German,, andl Java-Btazil)) were uniformly low in extractables.and.frees sugars. Fraction A The calcium ionn inn the pectates, whichh was..readily exchanged.with hydrogen ion from the acidified alcohol, was present in thesc.fraetions; tliey gave aa nega- tive test forr carbohydrates. The results are tabulated in Table ISI alangwithg the toCQl calcium determined on ashed samples.of the sante tobaccos. Positive and negative controlss weree used ini all the qµantitative calciumm deter- minations. Unacidified, alcohol was ineffective inn re- moving~ealcium. The extractable.andtotal.calcium contents varied'.con- sid'erably' betweem the cigarette typess and the cigar types:. Pennsylvania andGerman stems contained the greatest't amount' of both extractable and'totald calcium. Onn the other hand, the ratio of extractable too total cal'ciumm wass variable for the four cigarette.types (varying fromm a low of 0.38 for Maryland.to a high, of 0,62 for Turkish).but uni-form for the.four cigartypes,(ranging.r from 0:51to 0.57). Fractions C, D,and' E. Thin-layer chromatography of these fractions showed they consisted oFl polymeric. materiall in all cases. However,, on hydrolysis,., galacturonic acid,. gal'ectose,, arabinose, xylose, rliamnose,, and probablyy glucose were found. The presence of glucose' wass not'defihitcly established, since it hasa similar R f and nearly the.same spotcolor asarabinoses in the chromatographio system used for thesee analyses... Glucosee probably was present, since it wasfound in: fraction~ Aand' in other stern O. , investigations. Itspresence wasal'so reported byRichardsZ (1962), who examined some.of these same types of tobacco q ~. stems. AA photographh of a thin-layer chromatography plate. containing unhydrolyzed and hydrolyzed. stems is ~ shown in Figure 3'., AA summary of the chrontatographicresults in Figure JwA Bte Brigl- Burle Mar) Turk Penn Pnen Gem Java-
Page 164: fiw68c00
9,760;1sd ' ' . . $XNMPLE ONE. . I remotstened to.permif removal'.of the tabauo.sbeet.ia a A preferred example.of.a~method in accotdance i withcontinuous.pracess. - th'e: presenfibvention.t of tnakineasubstantiallywater in- ^It was d'esuable to reduce the suspension pH to 4-3 to solubl'e self'supporting tobacco shcetmaterial was carried 'soMarn' better resistance to, disintegration onn saaking in- out as follows: Tobacco was cleaned of'f foreign matter 6water. LowerpH increases the rate of erosslinking of.. end eomminuted: . to pass.through an80i mesh. screen.. +the HEC byglyoxal, and'thus increases water, resistance: .."73e size reduction, was.conveniently carried out in aballi . .. EXAMPf.EFOUR mill. . Bi d i n erm sture . ~ -tApreferredpolysaccharfdefdmformingagent.waspre• , pared.by dissolving 2.6.pounds of sodium.carboxymethyl. 10 . Parts 5Sod'um a]8 aate„ low viscosity (Kel& LV) ------- 2. lli l i L74 ds t l ti 2 f T h u ose . w a . pono er. o t eso u on o .M wa . '' pounds of paper pulpwere.addedl and.diapersed together Glyceriue _________________________~___----- 0.6 with0.5pounds:of.glycerineandi0:375poundsoffglyoxaL. ... Water________________________~___-_--____- 90 ~tcaerandiCiganette paperr pulpfiber---------------------- 2 The glY~tir+e.andglyaxal.served respectively as aPlaa- $ cross-linkiugagent: A9%. HCI eolutim 15 Thee sod'uum alginate was agitatedd inn the waterr until'. ,was added until the pH was between~2l6 and 2:8; This completely dissolvedi Tothiso was.added a solutioo of ~resulted inn the formationn of acid carboxymethyl eellu- , 0.4 parts calcium chloride dissolved in 10 parts water. lose, an active step in.deliberatelyfixing the film forming On addh'ngthe calciumm ctiloride„ lumps of gelatinous cal- agent in a substantiallywatery insoluble form. cium alginate precipitated.Asagitation continued.these. Finely divided.mbacco wasblknded:.with the filsn form- 20 lumps broke upandi the entiree mass became a uniform . : ing.s agent to, form a smooth homogeneous suspension. gel. After this gel was passed through a colloid mill ar .' whichranged~ im consistencybetweem a syrupy' viscous a 0.001 inch clearance it was a smooth dispersion of in- ~liquid and a 8rnrpaste.. Io this example, one part of dry soluble calcium~ alginate ian a highly. hydmted' form. It~tobaceo was.added tonine parts of binderr dispersion- is desirable to restrict.the addition of.ealcium chloride to. The suspension was applied to a, stainless steel belt, 25 50-909'0 oElthe stoichiometric equivalent of sodium algi- - whereitwas.spreadout,.dried,remoistenedan& removed natetootitainagood balancebetween.stabilityofthe . as a finished sheet:. The dtyingg operationn wass ttiee final dispersion and waterr resistance of thee dried film. If tnee step in fridng,the.binder in a substantially water.insolu- calcium equivahent addedi exceeds 80%, , the dispersion ble.form. . ' - tends to be lumpy and does not produce a smooth film. EXAMPLE TWO30 WBen.the added calcium equivalent, iss less than.505"0 of. - ' Briedermistnre the sodium alginate, the dried film tends to be sensitive to. ' . -waterr and to disintegrate on wetting. The fiberswere. ' - arts then thoroughly mixed intoo thee binder dispcrsion., .So-rLoctsf _bead -gam----"-----""-----'-""_-'_' 2 dium pectatee may be substituted'conveniently for sodium . - Water. _ ____- _________- --------- _---- 100 38 alginate and propylene.glycol alginate may alsobeusedL. Glycenne __ _- ____________________________ 066 To the binder dispeaiom prepared above, eight.parts~~106 pulp`--'"'-'-"-'--""""----"---"-- 2 . of ground tobacco, minus 80 mesh,.were.added'to.form The.locusb beam gum, a galactomannan gum derivative aa suspension. The suspension was passed.through a col- from legume: endosperm~, was sprinkled intocold water Ioid mill twice. Onepasswas at a cleamncee of. 0.011 with agi3ation. A. Cowlesdissolver was foundd to be a 40 inch and the secondi pass. was at a.a elearancee setting of' , goodagitatorfor'thispurpose,althoughothertypesof 0.002inch... Finally,themilled.tobacco-bindcrsuspeo- _agitatorsalso.produeegoodresults.. Aftertwo~hours sionwasapplied.toa,castiegbelt'andtreatedasdescribed.- agitation, inwld water, the gum dispersion was heated to above: to produce contiauous tobacco sheets. ~100-200!' F. with continued agitation and held above Therehave thus been described methods.ofYormiug a-- `170' F..for thirtyminutes.. Glycerineand'glassiae pulp 45 novel tobacco sheet materialiuseful in themanufacture of were then mixed ia. After cooling„ IiZ parts of ground smokingg articles. Thematerial is resilient,, substantially _ tobacco,dusr passing through an 800 mesh screen were water insoluble,, self supporting.g and retaiass thee qualities .•mueed in. The tobacco-binder. suspension was then of natural tobacco.leaf~ such.as.aroma, flavor and color. .: passed through aa colloid mill set at low elearance„ i. e. 77re process is based uponn the blending of finely divide& .002-.g10'0 inches using onepassat..010'e inchess andd a 60 tobaceoand a substantiallywatery insoluble: film forming, second passat..002 inch clearance. The viscosity of the agent too form a novel tobacco sheet material. . ` final tobaccabinder suspension was 12,400 centipoises Whatisclaimed'is: at 85° F. and the.pH was 6.41 THe suspension~ wascast 1. Tobacco sheet material comprising finelg divided' onastaibless.steel.belt,drie& and.remoistened.by.a.fine - tobacea,atleastaportionof.whichis.entirelyd'ryground,water spray to~ the point where acontiauoussheet of to- 55 within amatriz of an initially water. insol'uble polysac- bacco could be removed from the casting belt. cliaride edhesive: - • EXAMPLE THREE2. Tobacco sheet material comprisingfinelydivided. - tobaccoi, at least a portion of which is entirely drygroond,. . . BY'nder mixture and randomly dispersed fibers,, within a matriarx of'sub- ' • Parts 80 stantially water insoluble polysaccharide. Hy,droxyethyll cellulosa (HEC)________________ 3 3; Tobaccoo sheet material comprising frnelydivided Water ------------------------------------- 100 tobacco, at Ieast'a portion of which is entirely dryground„ Filler paperpulp----------------------------- 1.5 withina, matrix of.atleast one adhesive material.selectedGlyceriae. ---------------------------------- 0.3 from the groupp consistingg of carboxymethyll cellulase„ _ Glyoxsl ------------------------------------ 1.0 65 , hydroxyethyl cellulose;. galactomannan gums and sub- All materials.were charged into a vessel.equipped with stantiallyy water insoluble polyuronides. aw agitator and agitated forone.hour.. A CowlFsdis- 4:'k'obacm sheet material eomprieingg finely divided ~ solver issuitables for agitation purposes. Sixteen parts tobaeco: within a.matrix of crosvlinked polysaccharide C of:finely ground cigar binder leaf scmppassing: through adhesive:. . -1 ani 80 mesh sieve were added and the tobacco-binder 70: 5. Tobaceo, sheet material comprisingg finely divided ~ suspension was.agitateddorthirty minutes. The.viscosity tobacco within a matrix of. polysaceharidee ndhesiveand ~ of the tobacco-bindersuspension was65011centipoises, giyoxal•and the pH was 6.0: 6. Tobacco sheet matenial eomprisiegfihefy divided Cr The tobacco bindersuspension.was.spmyed onto~a tobacco,atleastaportionof'whichisentirelydryground,, moving ateiolest steeli" casdag belt, driedd and earefidly 76withia,a mattk off'cellulose.glycolic acid. _
Page 165: fiw68c00
3cco ste 10 I il' m5. . ,n( nef, Z.20 e 12 24 a 30 . 17:26 O 17 25 40 . 00. 9 92 a , .50 17.62 60 .70 14L8 i 1.0 16.68 ~` i I ../ t 1.;_ 12.36 OLO 0 13.20 ~ .10 fv 15 4 f'' if. ~i P11 ( ;rlltf f I~Ifilr II [ k i1} I ~~}fE i~ {t,kl I r' ~ 7~- r.[ f ~ f~ i~'f; I I i ,f;"k ; WwI~iiil ~ , t I f f 1'-. t )-I ' YI µ) s~-tw^ fY f I~.i7_ ~X1 '1. t !{-, T .c. ~ iYT.rii ' fl Hi flUint I .... , . t._ - r_ _ r t r ...-c ~ ._ 1:11t r _ : -: TURKISH STEAC 5 6. 7~ 8'~ 9 10 11' VJAVELENGTH: . (MICRONS) ETHOXYI'-1.675 ~ ~ 13 14 15 12 R.igureS. Comparison of the pectic substanccs in extracts C,. D,.and Qfront Turkish stems 3 is given inTable IV, which shows:s that there aree dif- ferences ihn the amounft of the carbohydrates inn thehy- drolyzates of the. various fractions. Nofurther etfortt was nnadeto investigate this distribution.. The galacturonic acid.contents found in.these fFactionss are gi'venn in Table W., The sodium,hydroxidc. titen of eachsample aftar tlirextiaction o0calciumm is:also incWdedl for subsequen0 comparisom G dacturonie acid. determina-tions om the successive extt tetions and washing com-prismg each fraction werre nrricdd out.itx .:>.:lce: suree thatt eachftaction was completely extracted!. To confirm that the materials isolated in fractions C;.D, and E..were peetins, Ihesolutions were concentrutcd under vacuu m, a nd the cancentrates were :pout ed on tt;nrh bl isses. and dried slowly too yield hlms': These ftlms hacll mfi,tred spectra sintilar to those ofcomntercial pectins, and 7 cnnt- parison of a contmcrciad pcctic material with one of the Q tobacco fractions is'showns in figure. 4. 1he gencral ~ similivity iii the absorbanccc curves is apparent. Inn ad- %3 dition, when the concentrHe.was nrixcd.witheypal qunn-N htics:of either ethanol oracttone,.a gel ruultedl TheseVI characteristics ptust:he behavior on tlim Liyer cliromalo-~j grams leave little doubt thut these isoluted fmct'ions: nrc ~ all pectic.matcrials: VOL. 15, . Nol.6, NfiV,D4c•: tsGt 1061
Page 166: fiw68c00
tion or synereses im creams,. lotionsand oinlments•. (If) To imparo viscosity in products with-out inoreasingg weight. Things~f'o look for in 4he use of fhickening agents. By ald' means„ firstt consider the: productt in. which the thickening agent is.to:be used. (a) 1'.f the'gum is' (heunlg item; in the producTt which mighn lea4 to fermenta- tion or putrefaction-selectn a syn- thetic thickener which does not. re- quire. a bacteriostatic or antimold- fng agent. (b) If a thickener is wanted lom producre higlt.viscosity,h choose a gum having a highh water hydration capacily, suchv astnagacanlh, C.11f,C. etc. (e) Ift a stabilizer is desired lokeepin-soluhle drugs in suspensione, seleclt a thickening agenrt having thizotropirt properties. Bentnnite or Veegumarc the best im this regard- (d) Gums having high swelling obaractrr- iseics such as tragacanthh aree ueuallypoor emulsifiers, They may ° preventt emulsion separation duee to high, vis- cosity butt they do not produce very' white emulsions, In this respect'acacia Classificetion of Thickening Agents. /„VEGETABLE'. Name Trade Names and , Source or Menafaeturer - ' Other Names Acacie Gum Arabic Penltk;. Hopkins', Sfein-- Hell, etc:. Tregacanhh - SameChendrusIrish-moss, Ca.rrageen " _ Pecfin. ,. -------Citrus'Pectin, Apple Pectin . " Keraya Indian Gum,.SterculiaGum ('Dispsrsized'Gum Kareya avallnble fmm Morningsteq Nicolj,lha.)Iocusl'Beno •' Carob Benn Gum. Same. Quince Seed - " Algin! Kelgin Kelco CeiTregeenin Algaloid, GeRoidi Seakem, TI. M: DucKei SeaKemi, . Gelcarin, ete. Burtonite; etc. PIl ANIIMAL Gelatin . Pharmegel A and Pharmagel BAflenfic Gelatini IIIL MINERAL. Hydrated Aluminum. Bentonite American Colloidl Silicate - ' MagnesiumAluminum. Veegum R. T. Vanderbilt. Silicate. • . ' IV. CELLULOSEDERIVATIVES CMC'(CerboxyMeth'yliCellulose), . Hercules Powden Met'hacelI (MetNyl Cellulose). Do... Chemic'el Ethocel. (Ethyl Cellulose) Dow. Chemkal Cellosize VOPHS(IHydrosy, Ethyl Cellulose) Carb:d6 and CerbonV. STARCH DERIVATIVES - Clear FIo Stareh,(5od. Sn14lofSta.ch Acid Eeter) Natlonel Starch-Preducts Corn SferchR-10,(Cerbo.ymethyl) Corn Producfs Cmn Starch XR-32 (Hydroxypropyl) Corn Products - VI. VEGETABLE GUM DERIVATIVES Kclcolofd (Qrganic DerPv. of Alginic Acfdl Kelco„ VII.MISCELLANEOUS- Elvanol (Polyvfnyl Alcoholll Dupont - (Vut:.20: No. 101 OCTOBEI4 I95{ . 941
Page 167: fiw68c00
m. lA, 4s, isen n '.Ve nd i thi ed tb ee as' te- re or dd is d Source of ' Pecfin Apple Beet Tlable 2. Wydrolysis Producfs of Peefic Subsfances. . Anhydrogalacturonic Galacturonia FreePectinic Acid from TobaccoLamina. Free' Pectinic Acid from Tobacco Midrib Pectinic Acid Derived from Lamina Proto- pectin of Tobacco. PectinicAcid Derivedi from Midrib Prato- pectin of.Tobaceo, Acid Acid' Arabinose Galactoso Glucose Xylose L-Rhamnose 90.6. + + + -F 4 + 82.3 + -}. -f -F -I- + 66.0 -}- 65.0 + 76.0 -F- -}- -I- -f- -I -IF 76.5'. + + {- -{- -F- + } = y(prdrol3si} PrndYOe Pre.rrnt ' - = Hydrnlys4 PrcdkrkAbxnt - stant stirrfhgof 4 hours each at 25-35°C were performed and the filtrate.pooled. Equal volhmesof HCI- ethanoP.were addedto precipitate the pectinic acid derived from theproto- pectin., Both. pectinic acid fractions were purified by resolubilizing them threetimes in distilled waterand.precipi- tating with HCI-ethanol. Hgdrolysis and'. CAroniatograplrjr of Pectinim Acids The pectinic acids's weree hydrolyzed with 1 N sulfuric acid (1..0gramim 500 mt I NH.S0,) by refluxingfor2:5g hours.. The hydrolysates wereneutralizedi withh bariumm carbonate.. The barium, sulfate was removed' by filtration. Excess salts were precipi-tated with 3volumes ofethyl'.alcohol'f and separated by filtration.. Thefil- trate was concentrated to. 109$. soliilson a rotat.iing flash.evaporator. Five-mieroliter sampless werespotedle on Whatman No., 1 filter paper. Thee chromatograms were.developed in the ascending direction withh ethyl ace- tate, pyridine, and water (6i 2.5 and 3 volumes;, respectii•el,v).. Ethyl ace- tate containing 2% each. of th•iehloro- aeeticacid andd aniline was used as'a, spray reagent for tlie'rdentifmatione of gal.lcturonic.acid and the associated'sugars., Thechromatograms weree de- veloped for 5 minutes at. 85°C (13.).. D'etcrminrttion ofTothl.Pcctinic Acids The total pectic substances weremeasured quantitatively by the acid- carbozole rraction of IIlcComb and McCready (12,15). ,':'ersene was used to.sequester the.divaleut cations off the.protopeetin. This.procedure is aa modifieationi of'. Stark's method (23). which is based on the carbazolere-action by Dische (4):. The liberated. polygalacturonic acid was enzymatic-ally hydrolyzed'wiith polygalacturo- nase (Pect'inol 100D; Rohm and HaasCbL, Philadelphia, Pa.). The: galact- uronic acid was determined colari-metrioally at 520 mr,. The color in- tensity due to the reaction of galact- uronicc acid withh concentrated HkSQ, , and carbazolee wasmeasured. The concentration of galacturonic acid; measured as anhydrogalacturonic aci.d was obtained from a standard curve over a range of10. to 60 micro- grams., Tkebfet'hVC Ester Cnntent Thee methyl ester content of the pectinic acids was determined quanti- tat&velyby the pectin esterase method of' Spei'ser,, et al'. (22). Twogramsof pectin were moistened withethanolh and dissolved in 401[1 in] off dist'illed.water. Ten millilitersof.2N sodiumm oxalate were added. The solu- tion was adjusted to pH 7.5' and 0.1 g of pectin esterase.wasadded. The hydrolysis was.continued for 2 hom•s,., during which time the pII was read- justed to pH.7.5'at. 15 minuteinter- vals by adding0.5 Nsodi.um hydrox- ide f rom a 10 mllburette: A Beckm: g,pectinic acid dissolved in 75m1 0.16 M sodium. chloridee was. measured: Sodium hydroxide (0.5) was added to adjustt t'hesolution to pH 6, and the resultant solution was diluted toA00ml andl filtered. Subsequent dilutions of 0L35, 0.25, 0.10 and 0M weree made. 'Illie meas, urements were conducted in. an.Ostrwald Cannon-Fenske No. 50 capillary pipette. Thee temperature was main-tained'. at 47°C± 0.03°C. equiv¢lent Weight' Five-tenths gram of pectinic.acid'c was placedintod a 2500 ml titration flask and moistienedd with 5ml of ethanol.. After adding 100 ml cecar- bon di~oxide-free dist'illed! . water, the solution. wass slosvlytitrated with 0.1 NNaOH (5). The equivalent weight. was calcu- lated from the followingequatiom: 1000~2( wt. of'sample (gm)~ Eti. IVt.= N XX vol. of.alkali (ml). Electropkoo•etic Properties APerkin-Elmer Tiselius. Electro- phoresis. Apparatus with.a standard 2-milliliter cell' was used. The cell cHannels were 15 mm deep, 2 mm widc, and had a cross-sectional area~ of 0.300 cm'., The Tiselius. A.pparatus~ -as equipped with a: Scblieren-scan- pIImeter was used, to dhtermine the~ning device as modified by Longs- end point. ThemeLl4yl ester eontentNworth (40). The water bath waswascalculated: . fromm the amount of~jmaintnined at 0.5°C. Five-tenthss per- 0.5! N sodium hydroxidereqpu'ed to(f,cent pectinic acid soliitions in, 0.1 N' neut'ralize the availablhearbocylWsodiumacetate + 0101 N acetic acid. groups.. Qbu0ler w:cre dialyzedd agai nst the same . Yiscociti.es The relative viscosity (rel:.)) of 0.5 bufferfor 4 days. Two changes. of' bufTerwere made. during thedialysis.. A. Leedsand. Nort.hrupp canductiv- QTo6acroSciencc 237J
Page 168: fiw68c00
I Table MI. lFfethox-vllContcnt nf'1'cc6ic Martcrials Isolated from.Tobaccos^' Eutmets Tobacco C D E Turkish stein, 3,42 1.58 . 0~.45 Bright.stems 2'.03 1,04 1.13 I'ennsylvania stems 1.20 0~.45 Bulgarian whole leaf 2176 2.32: 0.66 °Per'eent based on isolatcd pectic: sobstances: Table VII. Compaaison of Results withl'ubli'shed Data Results. of. This Literature {York,.. Results, Stenl j % ' References Bright. 1I-12'10-13Richards (1A62)~ Budey-16-1'7'14-17 PhiiiBs'andlBacof(d958) Pennsylvania 16-17 14-17' Richards(1962), German. 16-17 13-16'. Richards (1962p Havana leaf 13-14 12-13Pyniki and Moldenhauer (1963) The infrared spectra of the peeticsubstances,in fractions C, D, and'~ E of Tunkishtobacco stemss were compared (Figure.5). The infrared.spectra show that fraction.C has a prominent peak at'~ 5.755 microns, indicating ann ester group.carbonyl„while the othertwo'spectra seem.to lack this prominent peak: Since other pectic fractions from tobacco stems showe& similar results,., the methoxy[ con- tent ofthefilmsused'f in theinfmredl workwas.determined (Cable. V I).. Ttietable shows that the :isola ted pectic sub- stances differ inn the degreee ofesterification.. Thus, the fractionation procedure used'separates the pecticc substances into distinctive groupss ass distinguislted from, . the gross extraction that isaeliieved by the classicaP, ammonium oxalatetireatment.. Whil'e nod'atacouldlbe found inn the literature.to compare with the galacturonic acidd distribution reported. in this paper, thereweree published values of total galacturonic acid content... The results in this investigation compare favorably with the ones reported in.the.literature (Table VII). DISCUSSION The sodium hydroxide titer of the cigarette type stemsiss more variable (rangingg from 0j21 to.. 0.47 meq.. per gram) and generally'lower than that oFl the cigar type stems (rang- ing from 0:46 to 0:57'meq..pergram)', There.appears'toe be some relationship between thistiter'and the quantfityy of fraction: D in thecaseof cigarette stems.but.nots cigar stems. Fraction C is larger in the'cigarette than.in the:cigar typee stems.. There does not seem to be anyy genera4 relation- ship between: the quantltyy of fraction C and tiie ratioof exnactatilecalcium to total calcium. One could expect 1062 1.. AGR. FOOD CHEMS llhe.release of a relatively large amount ofcalcium front the pectates to: result: in pectic acids which should be extracted in fraction C. The opposite is ncarer tha truth, particu. huly inn the case of cigar type stems. The reason may be that although a. large number of calcium bridges in the pcclalesmay be.broken, the breaking of these bridges amd the'conversion of the'pectatesto the.aeid'e form does not necessarily makee them eusily extraat'able: If so, samples with lArge amounts of extractable calcium should have a relatively high sodium hydroxide titer. Thisis the case forcigar type stems.. The.individual factors.contributing to'theease of extraction of thepectins inel'ude availability to, the'e solvent,.t molecularr weight, etc. A study of the molecular weightt distribution in the various fractions would, no: doubt, throw considerable light am these dir- ferent results among the to6accostemo types. -.. Botlhh cigarette: and cigar types of stems show consider- able variation in.then total'l galacturonic acidi in the indi- vidual. fractions. Also, the'relative: amount of fraction. E and the total do~not followw thepattenn. For example, in the.cigarette types the relative amount.of fraction ff ranges from a lowof 10 % for Bright to a high of 27 % for Mary- land, while in the cigar types they range from a low oB 18% for Puerto Rican to ahighnf 50:% for German.. No simple generalizations can be madewithe regard Ito the.peetin distribution.in cigar'and:cigarette types, Each individual tobacco type (whether cigar orcigarette) :seems to have characteristics which are noo doubt relatedd to, a complex interaction of variety;, agricultural practice, cli'- mate, sail,, curing, ete.. Even though this study did not deal with thefractionation and! . characterization'of pectins in' different lots of the same tobacco--e:g., Maryland as: Maryland, Turkish es:.Turkishy etc, sectional, andlother natural.variations.(including time oPharvest) would! prob- ably result in differences im their pectinn content and dis- trihution. This is the very naturee of the dynamic bio- logical system. LITERATURE CITED~ Bacon„ C. W., Wenger, R.,. Bullock, L. F.,. U.SI Dept. Agr. Teclr:.BrdL.1032'(1951.)I. Bitter, T., Muir, H;,. Anal. Binclrerrr. 4, 330 (1962).. Glick, D:, ^Quantitative. Chemical Techniques of Histo- and Cytochernistry," Vol..l1, p. 47, Interscience,. NewYork„1963. Jacin, HL, Mishkin,.A..R., J. elrrammatag'.. 18;. 070 (1965). Kut¢, V., Ott,.J., Elelm. Ipnr 11, 71 (1957). Neuberg;,C., Schever, MI., Rioclrem. Z. 243, 461.(I931). Philips, h1., Bacot,.A. M.. U.S, Dept. Agr. Tech. Bnll. L186„89 b1958). Philips; M., Wilkinson, F. B., Bacot, A, M., J. Assoc:,Offic. Agr.. Chemists 36„ 123;, 504, 1157 (1953). Pyriki,. C., Moldenhauer, W:, Ber.. Lrsr.. Taba6forscli, . Dresden 9, 306 (1962)~ Pyriki, C., MoldenHauer, W., Ben Grst. Tabakforseh Dresden W, 239'(19fi3). Richards,. G. B., American Machine Be. Foundry Co., Reading. Berkshire, England, private:comniunication, 1962. Walil, RL, Tabak-Forsch. 7-8 (September 1950)l . Receieed' for reriew' April 181 , 1967. AAccepted Jurly 10, 1967. Preervnedu!' 1Ge 10+G Tnixrccu Chemisr Research Carrferenre,. Winalar-Salem n N C NDC b 1956 COffiF Fr is, le sp hr cc th avan il p and its r Southen and stal (Guenth Reverch rurifolin, Chaix) ( an oil w true lavr resistant hardines become In the I Southen per year naturall portance investiga. I), and C indicater been ref so comp lified'- ; of the ca EXPERI: Lavan crn Ifrar from lh combine Gocandir Cl1i Colgate- ; . .. e r er . ~'. tJ ~ C11~ CJ
Page 169: fiw68c00
32435,829 then added to a slurryoonsisting of 8.5grams off refined kraft pulp dispersed ih. 2000 ml.: of water. The resultant mixture was: homogenizedd in' a Waring Blender. Four grams of glycerin.were themadded to the.mixtureto serve as a hurnectant. The resulting mixturee was cast intoo a binder film„usinga Gardiner casting knife set to~produce a.sheet haviagg a wet thickness of 50'mi1s..The physical properties of thissheet; after drying,, were tested and were found comparable to the properties ofconventional binder films,The physical test data are given inTabl'e II. The'e control material was made by mixingpul'p; which bad been refined with Na011'„with sodium carboxymethyl cellulose.(CMC) and a Humectant„as isshown in Table'II. TABILE 11 ' Tost Binder- Film Contral' Btndmv Film BlirderMaterial Dried tuanccn eztracted'. trnm tobacen penoles CMC-l~PUlpt• Bmla Weight, gmalrtt:... . . a 5 S'g1 _ ___ MosGUe, Percent-------------------------- . 14.3 IU0 Tensile Coenicient'...... ._........... _.~..__ 0.6e 0. 87 Instrom Tensile;s.i 5:0 &3 Elongatlon,.Pereent ..__------ 4.1. 1.1 WerkLeenlcient; srwn cm.lstn ai."......... 37:9E 51.0 2d' eWork condielent'Is proportlonalRothe pmduat ot the teusnestrength and the elongatibn. °ChIC (sodlum, nrbovymethyl.eellulase)l mldpulp, as prepured, by trwwnmetbo0sandcanteiningabout33'7aC]ICl 00' Example 3<Ane hundred'grams of: burley tobacco stems were cov- ered'd with distilled water, leached for 30 minutes and then',drained: The washed stems were then mixed with.a solutionn containing. 10' grams off diammonium monohy- drogen orthophosphate in 600.m)..of water. The resultant slurry was heated for 1'..hourat a tcmperatureofftom.90 to 100' C. The pH'.oflthe reaction mizture;..after com- ple(ion of thee reaction,, was about 7. The entire reaction mixture was homogenized in a'Waring B'lendor: The solid9 content was: determiited to be 5%% by. weight• Two gramss of glycerin, to serve as a.humectant, were blended with 200grams of'.the above reaction mixture. A film of.50:milwet-thickness.wascastfrom this mixture. The extruded.filmwas found'd to have the property of:be- ingf able' to slide off a surface evenn when newly cast. After the film was partially dried„it.was foundthatd it could be' peeled off a plate by hand, while: still partially wet and then'bung,up to dry like wet cloth. This property provides definite advantages ih.the:tmanufacture'of tobacco products,. Physicall tests were carried out on t1tedried film thus prepared' and were'e also carriet:;rLi~,p,;a2ntrol fr1mm made by using conventionally.pulped tooecco~plant: parts with sodium carboxiymethyl ccllu'^ze (CMC) as the bindcr. A film of binder as madee in this examplc'.was burned and was found to give a pleasanearomatiu smoke. The test dataarea given' in Table. III. 'pABr.E'.III Test Control Bindcr.. Blndcr. Film Yllm Binder s ToGncca IeCtlni gPl Imrmed CMC}I'ulp In.situ Bunwelelrt,.gms.ifA?---- -_.-- ------------ 15.9 Molsture, 1'rm------ .._. 143 Tc .IIEQwIbU t __ ..... 0.13 r~ttM 'r,,,ul 1'.,1] ._. . •.... ..,t,U Rlmigotlnn,.Percrnt.__._ __ l.kl WovkCa•Iliciruq¢ wc,n.iaq. L1.i._. . . ~ .. .._- a110 p e w . TABLE IV .Reagent Vol..of coagulated tobacco Pectins 12 E7lamplcs 4-10 In each ofi'these examplesi bunley tobacco stems were covered.withdistilledwateq Icachedlfor 36.minutes', andl dtained.One'.hundred.grams~of stems were tteatediwith the 55 agent indicated in.Table 1R..The: agent was dissolvedd in 600 mi. of distilled water in an amount sufficient to make up a 10% (tiy'weight) solution. The leached tobacco stems were placed:in saidsolutionland healedlin a steam bath for 1 hour at a temperature of from 90'0 to 1001 C.. (Except 100 for the example in which' Versene was employed. That exampiewasconducted'..at room, temperature.) A five ml. aliquot was taken from the resulting:mixture and mixednvith 20' mist o6'f ethyll alcohol in aa graduated' cylinderr whereby a precipitate of tobacco pectinswass obtained.. 15! The amount of precipitate in the'e graduatedi cylinderr was observedi Each of these precipitatess of tobacco pectins was. suitable for use in~ the . preparation of'f a reconstituted tobacco. sheet in accordance withh the methods taughtt by' 0 ttie'presenf iuventiom T'heresults obtained in theseex- '' periments are resented''in Tablel'V b lo - Pentasodium tripolyphosphate --------------- 15Sodium. hexametaphosphate -----------------. 5Diammonium. monohydrogen orthophosphatu. (DAP) ------------------------------- ,15Tri'sodium orthophosphate __________________, 15' Disodium monohydrogen olxhophospliate -_____. 15Dihydrogen monosodium orthophosphate ------ 5Versene (tetrasodium salt of ethylenediamine-tetraacetic:acid)------------------------ 15 Example'. 11 3uOne hundred grams's of burley tobacco stems were'.cov- ered with distilled water, leached for 300 minutes': and drained. A solution of 10 grams of Versene: (tetrasodlum salt of'f ethylenediamine-tetraacetie acid) in~ 600ml., of water was added to the.stems and the mixture was made 't0basic with aqueous's sodium hydroxide. The resulting mix- - lure was~ thenheated for 1 hour att roonl.temperature. The entire mixture. (a pulp) was homogenized in a. Waring Blendoe and'd the solids content' was determined too be 5% by weight. A.200 gram portion of the pulp,. thus:pre- 45 pared, was combined with 2 grams of . glycerin, as ahu- mectant; and then', cast into a film of 50 mils thickness by. the use of:a Gardinerr casting knife: The resultant sheet was'folmd to have:satisfactory physical properties and, upon burning, exh'ibited.a very pleasing aroma. 10Example 12 Greem bright totlaccoleaves weree soaked in' isopro panol to'o remove sugars andehlorophyll. The mitlribb was stripped oufof the leaves leavingg the'web. One thousand gF, grams of the web(82' grams on. a solids~ basis) were placed in'a porcelain bucket and covered with boiling div stilled water containing 9'.3 grams~of diammonium.mono- hydrogen orthophosphate (DAP).. Thr. DAP wass added on the basis of 100 grams ofDAP' per 100 grams'of stems 00 (which.contained 12%moislure;% by wcight)', Thc'resull- ingmixture was boiledl at low heat for one hour. The juice wasthens first expressed fromthe'm mixture by hand. Solids, for examplee cellulosee andl sandl weree them further _ separated from the juicee by eentrilLging• The clear jilice 0 g5.s frons both operations was then mixed with' 70% ethanol 0 to form a gel,:which was~then squeczcd.out inchecse cloth, ~ Thegel was transferredl to a Buchner funncl where it.was ~ washcdl first with acetone and then witlrh ethyl cther. el] Finally; thc gel was placed in a vacuum desiccator and V 700 dried. The gel wassuitable for use in the prcparalion, of IN a reconstiluted tubaccao in accordance with the teachings CA of t'tle r'csonh 3.8 14.0 an] a3 4.1 61.0 t BIL<sl nn toial snhrnnn. p r xu'K pnramr nrt,:,,ts.n,•ight.. Example 13'. t Ap;4u: Ibr n m mn. Inx[ stiia: r wn.k eeoni,i,",e Is pn,lwnim~w lnItm: prodnet er we:lensno strengw Burley tobacco stalks.were'.separated into cortical tissuc, emltbaclongnllon. 75 woody tissue, and ''pit15.. A sample off each was steam
Page 170: fiw68c00
I 501 100 200 300 400~.500:600~. A X.yrlan i Angd'ase' Carrageenmt a.. f,rar3culitrius Carregeetran Prom ~pistillata ' J]°Pw ctiO Alginic acid , A radulan I1C-radulan Pect] Guaran EvdmizarnS Emdseu oane 100 200 300 ~ 400 500 C,00 100 200 300 100.50D 600 Teapente.e.'H .k « Fig. 1. Differentialithermograms'of potysaccharides d'eterm.iued4n an atmosphere of air:. attempt' to relate -the' thermogramsof dextranswiththeir physical andd chem- ical properties, Morita (4), concl!udi:d' thatt supplementation of the differentiall thermal' analysis data with viscosity and molecular weight determinations.yielded valuablee informationn concerning thee constitution of these' compounds. En- dothcrms's in the 100°' to 310°C'region were rel5ted!to the type of:linkagef en- counteredi -inn these d'extrams. Further variations were associatedd withsolutiil- ity changes and unique viscosity prop-erties: The apparatus: used inn our experi- ments consisted ofa furnace in which the rate of increase in temperature was adjustedl to ]0°C. per minute. The tem- perature differential between the sample (polysaccharide) and:a thermally inert standard(calciined alumina)I was'meas- ured by a awo-tieadcd platinum-ivi- dium.m differential thermocoupl'e: The furnace temperature wasmcasured by a platinum:-plalinum-10-percent rhodium _nonsulfated, polysaceharides. On the 276 thermocouple. Thepolysaccharide(5)e was thoroughly mixed with three times. itsweight of calcined alumina prior to packing in the nickel sample holder. There was free access of air dirrihgg all determinations. The data were auto- matically recorded on a Leedss and Northrup SpeedomaxtypeG recorder. and plotted with' furnace temperature. as abscissaa and dffferentialtemperature'l as ordinate. The carrageenan thermograms shown inFig'. 1(ah left) have essentially the same shapes. irrespective off their meth- od'of prcparation: They each possess a sharp exotherm in the.200°C region'and a large', broad exotherm starting at ap- proximately 250°C andreaching: a max- imum inn the 400°C rcgiom The carra- geenans aree suGfatedpolysaecharides composed aPmost entirely of D-galactose residues'and, found in the:cell wall of red' marinee algae. The exotherne at 200°C is.not displayed by any'of.the other hand, the thermogram(not shoae of agaR another sulfated. polysacchr ride; has a similarsharp.exothermdcpe,i at 265°C. It is therefore assumed l)L' these peaks are aa function: of thesa so,. fated esters.. The thermograms of Iiy carrageenan and of the hemicell'uloscw g (Fig. 1„ at right)) suggest't thaP thek preparations. are: mixturesof: core pounds. Amylose and amyl'opectin shosv cl, sentially the same differential thermt•: curve up to a temperature: of 380`f withh both' possessing an exothermic rr action maximum at.330,°C.At tempern turesabove 330°C;.the.branehed'ameiu' pectin molecule shows a second, lart. exothermic reaction at 425"C. The et othermicreaction of the seraigh; chained amylose molecule above 330 ( d'oesnot: display' such', a large'e enerpt change on,reaction, However, the tcmperatures'm at which thermall reaction,cease are'570":° and.470°C,, respecGivel)„ for amylose and amylopeccin, showints that. amylose has a.higher thermal sta; bility when the two polysaccharides arr heated iniair.. The two'uronic acid:containingg poii'- saccharid'es-nnmety, alginicc acid sndpectin-display a small end'othermic ce action at'. 145°and'155°C, respecGivdr These'reactions'are beli:eved to be due. to decarboxylation'of the uronic carboxylr group. This is. inferred from r3 similarr reaction occurring.g with 3-im d'oleacetic:acid'to form skatole at.170'GG (3).. At', this's time,, little cann be'postulatrJ eoncerningg the thermal reactions of the xylatr.or the guaran. Duplication of the thermograms was highly satisfactory in all cases. Althoughthe'mechanism ot' these thermal reactionss of polysacchr-.rides:cannot be completely elucidaled. it' is suggested that this technique'nu) have application.in the field of polysac` charidt:6 characterization andi in gcneuf id'entification oforganicf compounds 161 G: CHESnrtS:.O. THOMe91i•Departmentoj' Soi6s,, University ul FYiscori.ein,. Madison' Refe.enen and Notes L R. C. Msckenzie. Ed.• DtOtrenrfd 76n" rm•e.rNgorion oJ Cluys' (Mineralogical 5k-a" Lemclon, 1957). 2, F. Mattu and R. Parlsi, Rend. uminar. I" sal. unlv Cagitnrt 12 St. 17a; 177 095 t. IM/ 25, 96 (1955); Chrma•n (Mitun) D 189 410" 3.. G. l]msten 0. N Allen, 0. J. Atu'rL 8u1. Su Am. Prrm 23, 454 4 (1959) ~~ 4h H. Morna.[nuLC6r . 23; 64 (1956), J Chern. Soe..7g, 1397 (1956). S. ,Nr d. We are indebled to Prof. R.. L. whl` Purdue UniversaY and to Dr. L.51ui°d' Marine Calloids, Inc.,.RucklSnd• Mt.- h'r'I"" Yidine the po)ysaccharide samPlea uved sr'tF•nudy. r,se.r 6. l'his wurkwas supported ]u. Pnrtl by r fromlhe raduate schv°1 uf'.the Unber"^ Wiuons9ry Madlson; the r°nu>t 1s with the approval of the direclur. Agricultural. Experiment Slallun, Madiwn 12Gctober196a SCiENCE., VOL.1sl Ihls fru Itlyds 11ti; I;I Vt' Inl Ih,erdct' s, a•cr• „ nrnrxi, ,,,1 ft?•ab rWdpmat . ho+is. vrcJ4`7 ( I'crman ..r i:ol'alc' „v\It3. .dntq biri , rtc: been r,'tclphi :J there .-t Ihc Et .-.:rAtirrofn,,„lan (U q4hxving y,.ier. I ,arrf.fnm' tC and rIJ inAz Ilccausc Il..lodr .r tohart hYatlSe 0 <•murous "; nlan, ti~Plcmhel. lcrmine •P lick' i t,l.dia 1 Sr,ruglh f=.1tfio.. Ii;lpt' no. n +c prc+, %hxf 0 rucd in •.en Po ,~ rcu•wer. •.rec iinn nuf/.•yci ate wer •.n'plclca;hurevcr .ruJ' to Iv.mv dc llt k3; •E•'nl;cd I tla'I ~ rev75 Q t hird. ~' 'htice ,yng'. tik '~yatc, " / flmr, 4cre Ic 1he,' 5. L..dru p rr6ruk,ph l!,.2/ ~ t I• t4h~uAi
Page 171: fiw68c00
hydration, vi'scosity. appearance.of coL 1Lidallsolution„qc. - _(c) Natural gums appear too be more economica! to use. (d) In food products and even, in aos- metics:, manufaeturenprefer to ]ean tonvard natural'l gums. because they appear to be less toxic. Dispersions and soCutions Somee tlrickeningg agents, suoh astrags- tanth locustt bean gumi bentonite and algin prodhcetranslucent or opaque dispersions. This is nott disadvantageous, where a white orereamyr product is desired'. Ass a rule,, the more thickening used the greater is the vis- eositv. One aatwopern centt should produce optimum viscosities. Most of the otherthick- ening agents produce water-clear disper- sions or solutions. Acacia and Irish. moss extracts produceslraw-like inn color, clear ` mucilages. Soo doesgeliatin- Alosts thickeningg agents. when dispersed in ~,ater,., ab=orb, largequantities of water. Bemonitecan alisorbb enoogh water to ih- crease its volnme. 10 to 12'. times. Some can absorb 755 tm 100 timee their own volume of water. Acacia.. on, the other hand. absorbs littlee water and solurions of itt aree not vfs- eoue unfess high eoncentrationss of the gun areused., Very few thickening agents pzo- dure.e thixntropicor reversible gels. Gelatin and Irish mnsss extractives show this b2- havior. Bentonitec andl \eegum, likewise, pro- duce Ihixntrnpic geI<;, This phenomenon makes Ihese .ubstances extremely valuahle as suspendingg agents,. On, theothere hand, karaya Pumin a.a slightly alkaline pH pro- duees a di+persion which isstringy-like when poured. AA veryr important factor too cnnsiderr in nmcilat;e: preparaiinn Ic Ifieeffect of aciilv andd alkalie>.. Thead'dition nf alittl'e alkali to karaya inerea~c, itsviccn-itp. Even weakly arid or bniling will dr-lrnc lrish mossex- tract dieprcr4nc.. T.aEar•anlh Ss relativelv.Ualde between pl1'.2•1(i: Bi,th be.ntunhe and Vecgumn are ven' sen.~iliie too aeids and alka- lie,. Every thickening aFent behaves a little diBrtrnt'Ir% towaml pit .-hanp'-... Salts exert :imiCar e0cets. i{Oi Methods of producing dispersions or solutions Because thickeningg agents have a tre- mendous afHnityfor water, they tend to form lumips with water. Warm water or hot water increases this phenomenon: Rapid stir- ring.g during addition of, gum towater miai- mius lump formatiom Altliouglieach gum or thickening agent mayrequiire a little differentt approach too aHectt solution. or dis- persibn, the following methods usually pro- duce rapid dispersion or solution._ Powdered thickening agenHs (a) Mix the powdered substance, with an equal' weight of alcohol. glyceritte, propylene glycol orr any other liquid inn which the gum has noo tendency to - swell.. Then add enough. water with stitringg to, peodueee desitedd eonsis- teney.. (b) Placee cold water in. a suitable con- tainer equippedl with an electric stirrer. Add thickeningg agentin powder form, little by I6ttle„ until all has been addedl and let stir until smouuhh dispersion results. Tears Place desired amount od, tears in tepid or warm water and stir occasionally.during.y a 24hour period! Then expresss through a~ muslin cloth... Phanrnaceutical uses - (a) Too suspend insoluble drugs, suc1L ass calamine, sulfas,, chalk, etc. (b) To stabilizeande produce emulsions. (c) ToP&ve viscosity or body to lolionss and creams. Tends to produce l'esss greasy andld more washable prud'ucts.May be used in ointments for samee effects. (d) As a base for aqueous type vehicles . for dcrmatological use. - (e) Ass a basee for suppositories, jellies, etc. (1) Asadhesive and hinders in manu- facture ofl labllels, pills. Inzenges-. etc. (g). To prevent leakage, l.iquidsepara- AM6RiCAN PROFESSIONAEPHARMACISi, 00727547
Page 172: fiw68c00
. . Gelatin A' acts cationic' belowpHi 7 ana ts -Concluded from page 935, compatibfewitit cations. Gelatin B'B is cationiic. , bclowpHi 4.7' and'compatible with cations care and information discussed'the~ef[ects a6 new drug,discoveriesin terms of dollar value and kuman, care. Lowered~ death rates,. longer life, lessened~incidence of disease, lowerr cost'ss of medication, and shortenedd convalescence afterdisease.have resulted. The final sessiom wass devoted tothe: rolt• of' pharmacy im public liealthh andd was dedi- cated to the peactiaing.g pharmacist who iH really in theposition of maintaihing,themostg ditect and frequent contactt with tfie'e public. We wislitoh congratulate the Columbia Uni'.versitg College: of Pharmacy for the excel- ~ lence and tlimelinessofthisBicentennial Conference. EDITORIAL COMMENT -Concluded from.page 937 delphia CoBege'of Pharmacy andl Science as. Professor of' Operative Pharmacy and Director of the Pharmaceutical. Laboratories since 1900 and ngw holds. theranke of Pro-lessor Eincritus. He served as~ Chairman of the. Committee on Revisioa of the United States Pharmacopeiafor nearly forty years. He has: beenn a memberr of the A.Ph.A. since 1901 and' holds membership in the. Maine, NewHampshiie and'. Pennsylvania Pharma- ceutical'. Associat'ions., Since 1926te he has been co•editorofRemington'sPracticer o/ Pharmacy, a widelyusedy pharmaceutical reference and textbook. These arebut a fewofhis many accomr plisliments. Congratulations to. Drc Cnok and to those who have so honored him. THCCKENIN'G AGENTS -Cencluded'.ftompege 944 sioa stabilizer and'suspending' agenn Ex- cellent in oibtmentt bases and jellies. Gefatin-TtaoT are official'' under this tiYle. Gelatin A. (acid t'reated precurser) exhibits an isoel'ectric pnint't between pHi 7 and 9. Gelatin B (alkali treated& precurser) has an isoelbctric point between.. pH4:7and 5L0: [Poln 20; No. 191 OCT(}eEA: 1954: belowthe: pH:. Above the PH: it actss as an anion. The incompatibilities' of the gelatins with salts's depend upon pHH and the type: salt. Tannic acid, picria acid'and chromium~ trioxidee precipitate gelatin solutions. Gelatin. solutions are compatible with polylrydricalco-hols, suchas glycerin,, sorbitol,, propylene glycoli ete.. Gelatin solutions, as such, are not viscous at roomm temperature, but on eoo[ingg wi[l gel. Solutions are not good suspending.g agents unless used together with other gums.. It is an: exeellentt emulsifying agent. It is rec- ommended.that.athickenerasCMC or ttaga- canth be used with gelatim asemulsi~fying or suspending agent.An pH34;. sodiiumm ben.- mate, propylparabeny,thymoI and oxyquino-linein 0.1% coneentrationn have been found good preservatives. AtpH 7-88 thymol, clilor- ttiy,moland parachlormetoxylenoL in 0J% concentrations areeffeotive. Cetyl pyridiuium chloride in 0.005% concentratiom is also effective. .NEW SERUM PROTiEIN -Concluded'from page 953'. 0.03 per cent of' thee serum proteins; (4) Stable to heating at 66° C. for 30 minutes; (5): Destroyed at 100° C. in 55 minutes; (6) Nott a component ofthef blood-clotting; plasmin,, or hemolyticcomplement systems; (7) Participates in bactericidal, virus-neu- tralizing, andd hemolytic reactionsin the presencee of complement and Mg,4 + BacYerieidal propertiesUsing', 3ldgefLadysenterioe asthetests or- ganism it was found that all nonnal human serums tested'd showed'' high bactericidal activity whereas those from~whieh the proper- din, was' removed''were nonbactericiiial.. as wasproperdins byy itself. However. senim (RP)) which had been treated with symosan and to whickh sufficient properdinItad been added'' to give the concentration present. in serum, had a~Liactericidal aetivity,' ahrmstt as higiv as normal serum. Thus it appears that properdin, acting in comjunction withfactors present in RP;, was~ insolvedin~ the bacteri; 997 i I
Page 173: fiw68c00
A' s- ,- 19501 ulawik, .el as an 1- a r- ~ th, 6:07. :ulawik; of th'e sel Ad- otential ctrodes, -ar: Sef., zpb,. 6:, hi, andl rmpera- 11 Ciga- f Nico- e:. a><tt 34:274- :ackow: ol]bidali 'abaccc .,Deut:, -1951, 15: and Vapor nation r,, and 3moke: Imll _ urther fobac- tnveen m.and lrut: 1:106- c: The. ke, in ty- of .SSR- nnyi; IE 80: 'pyrol,ytic Forrnation-'Of Phenols From some F-ligh 1Vtolecuf'ar Weight Tobaccca Leaf Constituents And Related Introduction . : Eastern Regional Research Laboratory2 The simple phenols found'n im ciga- rette smoke arebellievedi to be pyro- lytic products of tobacco leaf eon, stituents. Wenusch (16)) suggested'that these phenols arisefrom carbo- hydrate, lignin. and'polyphenolio ma- teriall present in leaf. Ayres and Thornton (1) have shown that chlo- rogenic aci~d giveshighs yields's of phenols om pyrolysis. Bell and co- workers (2): have recently suggested that carbohydrate: materials which comprise about55%d offlue-eured leaf contribute about 41% of thee phenoli found in the mainstream of cigarette smoke. The highh molecular weightt mate- rials, cellulbse, .pectin„ lignin and pi:gn:ent comprise about 25%0, (8)of) the: dry. weight'of'tobaceo leaf, andi may, therefore; individuallyory col- lectively, play an important rol'eim phenol formation- Celluloseand'e pec- tin.are essentially carbohy:drates,, the former a polyglluosec and thee latter a polygalacturonic acid; both lignin.n and pi!gment are known, too contain benzene nuclei, thefbrmer inpropyl-phenyl groups (3) and.d the ]htterinr polyphenolic material (.17).. Consid- ering structural characteristics and previous reports(2 % 12)'in the 1recseafrd at Um Ze/hPub„rra. ChnnistY' R..+tarch Con)<re.ee, fPin.stonSatnn, Nu/tb Caro- Jt~q, Not,~ nl, 1gJ6. tiastrrnUeiRrneiAn Ruearch m,d De:rloCmene Dimrieq. Agri.vn..d, Rrrea,rh Service; Uxifed Stafr. DeOonmune uj Aq ia /ture, 66fY Ens! Nrn- wwid Lone, Rh;lndelplua: RennrYhania, 19118, US:A. Non-Tobacco Materialsi I 'W. S. Sehlofthaueir„ 1.. Sehmeltr and L. C. Hickey Phi6adelphia, Pennsylvania,. U.S.A. literature,, one would expect theabove-mentioned materials to yfeldl phenolsom pyrolysis, althoughh not necessarilyiny similar amounts. Im the present study,, celllulose;, pectin,, ligninand pigment, isolated from to- baeco, leafl,, weree evaluat'ed and com- pared with regard toI abilitytoy producephenolse pyrolytically. Ezperimentali Cellulose(6),. lignin (4, 11i), pec-tin. (13)) and pigment (5) were iso-lated fcom: Turkish tobacco by de- scribed methods,., or slight modifica- tions thereof. Cotton was otitained'' from Fischer Scientific Co.,;; wood. ligninn from Crown-Zellerbach Co.;,; citris pectin, polygalacturonin aeid, generally served as the gaseous en- vironment (30ml/min):. For cer- tain experiments, pyrolytic temper-aturess werevariede from 300!°-900°C inn atmospheres of nitrogen. andair.. Phenols weree isolatedi frompyroly-sates and their levels determined byy previously' reportedd procedures. (10',. 14). For pyrolysates fi-omm tobacco~ isplates,, determinations were lim- ited tao phenoll andd m- and p-cresol (not resoivablebp GLC) wbich . were the major componentsin: the phenolic fractions.. For pyrolysates from non-tobacco materials, deter- minations included o-cresob, Total phenolic residues weredeterminede from carefully dried'..aliquots of~thephenolic fractions.. - glucose, glucuro~nicc acidd and eello-biose from3igma. Chemical Co.,, Results and Discussion isoeugenol. firomEastman-KodakCo.; Because known methods werrused and o-n-propyl. phenol fi•om. Aldrich to isolate the highmolecular weight Chemical Co.3. tobacco leaf constituents, the as- Infraredd spectra. were obtained'd sumption was madethat the isolatesbg the. KBr pellet technique.. ... were indeed ligninr pectin, and cellu- ILigniin was oxidized in nitroben- lose and would require only super- zene and alkali (15).,,and, the.oxida- ficial characteri:zation, I!n Figure 1tion products were exam.inedby pa-~the infrared spectrunu off tobaecoper chmomatography (7). ~leaf cellulose is compared to that Pylnlysess were conductedi in a_4of cotton cellulose. Figure. 2 iss a quartz tube (4' x1.25" d:D.)) packednsimilar comparisom of the infraredwith quart'a.chips. Temperature was,Jspectra off pectini from tobaccoo maintaimedd at700°C with a Lind-Lnloaf and fromm citrus.. Kelatively -bry,- . Ilevi-DutyFurnace; nitrogemAhigh ash l'evels.hin.dered.the analy-I'Asis of: tobacco. leaf' lignin, but oxi- ~Meaea+aJ a rammeedw;eem dae, aae. t°n.etmtedation. in alkali and nitrobenzenee n,da.:emr~a by the United Sm/e.e Depprtment aI yieldedd the expected products:.: va- AVnrdtnrr, over oth'er items of a, rim,lar xature . .ementianed. nillin, syringaldehyde: and p-hy- (TobaceoSeienee 3mJ.
Page 174: fiw68c00
The Influence of Hormones' en Enzymes, Annalkk of the N6wYork Academyy of Sciences. Motume 54,. art. 4.. Pages531-228. $3,50. T HISconference is presented by thesec-tiisn of Biology in an. attempt to throw light on the mode of'action off hormonal.l in- fiuence.nver certain enzymes and enn-me.syse tems. It appears from the data' proHered', that such inliuence does exist, and.the ques, tion of how isattacked frommany view- points by twenty-four authors. Oetailedd in- formation concerning thee steroid hormones; diethylstilbesterol.. thyroxine, ihsulin. pitui- tary liormones.. epinephrine and corticoste+ roids upon. various enzyme systems bothin, uiro and ina*ron makee up theentire volume: The reader must bee w•ell'' informedl and in- terested in endocrine activity and respiratory phasess of biochemistry to maintain an under- standing, of thee various papers.. Vost of thee work discussed is. original,, and onereceivese the impression that the rationale underlyingg this conference is to present the widely di- verse data attead'p-accumulated with.thehope of.stimulating interested investigators to.proo duce mored!ata.andto correlate existing:ing foemation into less ethereal eonceptionsof'this very complicated relationship. The Scalp in Healthh and Disesse, by Howard T. 8ehrman, 5666 pages. I'9521 St. kouis;, 1:1o: C. N'.. Mosby Co. f 12:75. THIS account, which is synoptic but yet speeifie, consid'ersthe scalp from its embryological de~elopmenq through. physiob ogicall and anatomical aspects, to itsnormals and' pathological existencee in the mature in- dividual. The available evidences for etiolbgy and cure of! alopecia, bacterial; fungal, para- =itic and viral infections are consid'ered.. The chapter on hair preparations willl bee ofintere<_t to the pharmaceutically minded' i~ndisidkal. as a3so, willl he the formufaryw$ichy is included in the appendix: This lat- tercompilatiun contains the more.importante rheraPeulic preparations listed according too therapeutic application rather than too eon- tent. The illu=trations of mycological' agents of: di,case (dermstopbytes) are especialll° clear and inutusise. Each designated condition is discussed with reference to.diagnosis, etiology 986 and Iherapy. It.is a valuable work.from thestaudpoints.of physiology, anatomy,, diagnosisand thcrapy.. The profuse multitude'.oflillus- trationse followsthc general trend in derma- tological works;., being much more, informa- tirve and comprehensive than any worded' account. Heomyefn, by Selman: A. Waksman, xiv + 219' pages. 1953. NewB.unswick„ N. J.: IGr[gera University Presat {4:00. A NOTHER notable addition tothe listt of'achievementsof Nobel Laureate Waks-man iss this book.. The formatt of the book is such, that any reader can readily follow thediug from its inception to:its current status in therapy. The text iss broken down. into spe- cific suhjeets. Of especial interest to the. pharmacist are thechapters'e discussing, the properties of neomycin and i@sclinicals nses, . An annotated, thorough index appears at.thet end of'the.book... For anyone ihterested'in a, concise, comprehensive dcscr'uptionofn thiss drug, this is the book toreadl. Standard tfeliues in Btood„ by Er:eH C. Albritiani (Ed.), 199 pages,. 09521 Phile., Pe:: W. BL. SaundersCo. $4:50.. 1 T HISS volume;, indicatedl as beingg the fustt portion. of a handbook of biological data,, contains data from all available sources.com cerning the ohemical,.physical and physiologi- cal characteristics o'f.blood. Such a.compila, tion existing in. one-volume form fills a, Iong- emptygap in the reference shelf of! all per, sons interested in thee many arborescent' branches ol biological science_. Exceptionally valuable tothe biological investigator is the: information conoerning the blood of labora- tory animals. A comprehensive and easily understoodd presentation of five theories of: Hlood coagulation, eaeh givenn in "Ylow-sheet" form, together withh other coagulation phe• nomena, is a signal feature. Of especial in- lerestt to the investigator in pharmaceuticall science is a chart concerningeffectire bloodd levels.of over a.Poundredltherapeutie agents: This includes dose needed, flJtierapeutic usee and, for some drmgs,.the relative distributionihn serum, cells,.etc. We can look forward to. the second propo<ed compilation off such' val'uable biological information. . AMERICAN PROFESSIONAL,PHAAMACIST00t72'7553
Page 175: fiw68c00
(tcnOaiining. saltsas arallinates), Diish moss extracts (tontaining ealts.ascar- raghernates)i and sodium alginale offer best emulsifying powers. (e) If IerEequanlities of'.natural, vegetable gnm< euctr as acaeia, karaya or traga- cantir areusede it iss best to purchase the tears. They cannot he adulterated and are cheaper than the powder. 'fCoree uniform di..spersionss or solutions alH-avsresult. ('I) Remember thatt natural,, vegetable 11 h IiishAfoss-Consists chiefly of the calbiumm salith of' a sulfurua acid ester of a colloidab carboh}drate. Solutions of the active, .princi- ple.are clear, straw in. color. Greater.concen- trations produce gels. Mucilages losevis- cosity onn prolonged heatingand~ at pH below, 3.5. Alkaliesalso~ tend to lower viscosityof' themueilages.. The chloride ion produces agellling effect' on Irish moss mueilagea. Com- patible with alcohol up to50°6 eoncentra-tion.. AA good suspending agent forr many drugs. Likewise,, a goodl emud4ifier.. So9u- tions: requiree a preservative. c gums usua } cont.a mian enzyme, su Pectin---Consistsmainlyof partially meth- as osidasee or peroxidase. Heat oxglated' d'estro.•sthisenz me. Theumma be polygalacturonic acid., Produces purchased without dte.enz'me. Ifythe clear, col'orless solutions up too about 50c. enzymee is present undestroyed, the Solutionst aff pectin areaeid, having a. pH . viscosity ot'. the mucilage er suspension aroungoes.d 3beyon.03 d 415. H Viscosity eavy dmetalsecreases~ en wd'hpen pH vliy- willg gradually disappear to thatt of dricd aleo ~ 'n water within several hoursor days., u4ans to >re1 . Pectin iss an emulsifying Properties of some of', the thickeningagenfs Atacin-Con:ists mosdv of the calcium salt of arabic acid. Produces clear, straw- oolored solutions. Compatible with alcohol pron-ided! , alcohol concentration does not ex- teed 45<<.. Mucilages and emulsions appear not tobeo aRected between pH 24!1. Certain metala such as Fe, AI and Pb have a tendency- to gelaiihizee solutionss of acacia. Concentrated solutionss of borax, likewise. Acacia i'susedi cltiefls• ass an emulkifying agent.. It, is a good. adhesive. Consideredd a poor su~pending agent. SoPutionss require a preservative. A "dis:persiud acacia" rapidJysolubl'e in cold waler is available on thee mar- TraFacanrh-Consists mainly of bassorini (insolublet and awatersoluble gum. Pro• duces rran+lueent mucilages. Compatible:with alcoholprovided aloohul concentratiom doestmt exceed60'~:. Certain metallsei7her precip- ilate or gelaiiniiemucilages of lragacanth.. Tragacanth.appears mure stable in dilute acid solution=than in alkaline solution=. Alkalies darken, tliemucilages but do not affec0u the vi:eoeity immediately. Tragacanth mucilugesrequiie aP.lea-e24 hours.standinq.to prnduccoptimum rirro+ity. A hetter suspending.agent than acaci.abut unt as good a>nrnul=ificr. Sfucilagesr require a. preservatiwe.. 942 agent, although its emulsions are coarse:. It is a littlee better than aeaciaa as a suspending agent. Used chiefly for its gellingg character- istics. Solutions requiree a preservative. " Karaya'--Consists chiefly of the galactan gelose. Some samples produce opaque muei- Pages; whereas. oth4rs produce clear, color- lesssolutions: Neutralizing the mucilages tends to lower the.viscosity..Mucilages do not have uniform consistency, containing large masses off hydi•atedgumi Tendency too pour ivt "Elimy"or"stringy^' masses, especially i~f dispersions are slightl'y alkaline. High vis- wsily mucilages may he produced. Produces coarse emulsions. About om par with traga- canthh as suspending agena. ZlTsedexten- sivelyin wave, sert solutions.. Solutions re- quirea preservative. A A peculiarity of the gum is aa vinegar-like od'or on standing. A "dispersized karayaT rapidly soluble inn cold .. water andproducingd clear solutions isavails able on the market.. Locust Lfean--Consists chiefly of "caron- bine•` which on hydrolysiss givess mannose: Pioduces thickk opaquemuei[ages.. One per cent produoesa very thick. paste. Five per 'cent gives a solid. Acids lower viscosity whereas alkalies increase viscositv. Smalli amounts of borax produce a gei... Not pre- cipitated by salts except in, high concem AMERICAN PROFESSIONAL PHARMf.CISi ~ 0o727s4s
Page 176: fiw68c00
8,435,829 15 16 bring,the pHof the mirtureto a value of'afleasr7:Cbut. The.resulting, material was then employed as a binder no higher than 9:0.A for tobacco plant parts to form a reconstituted tobaccoThe mixture was then stirred for one hourandi sub- sheet; in a mannet+similar tothal.described in Example 16. . sequently refined' in a.disk type refiner until betaerthan Example 23 99% of the pulp (in excess water)) could beshakem through.an]8 mesh sieve. ° Bright tobacco stems were washed' in cold water where- The resul6og.material was then employed as.a binder by, from abom75 to 80% of the: natural content of. for. tobacco plant parts to form a reconstitutedtobaccod water-soluble substances were removed in the wash water:. aheetihamannersimilhrto.that:d'escribed.inFzample16. Thestemswere.thcndriedandgroundandlusedtomake Example 20 10 a binder as follows: One. hundhed partss of water were. brought' to a tcm- Burley tobaccoo stems were: washed itrcold water peratureofl100°C.,andto.thiswereadded: whereby,, from about'75 to80%e off the natural content 7.000 parts bywcight (dty basis) of thee washed brightt ofl water-soluble substancess were removed in the wash(0ue cured) stems, water:Thestems.werethemused,directlyin.thewetcondi-15 1.U partsdiammoniumphosphate,.andi tion to.make a binderr as follows: 0.700 part of ttiethylene glycol (TEG ),. as a.humectant. One hundred' parts. of water were brought to aa tem-' Concentrated aqueous ammoniaa wasthens added to perature of 195° C., and to this were added!: bring the pH ofe the mixture toa value of at least 8:Obut 7.00 parts by weight` (dry basis) of the washed burley no higher than 8:5. stems,g0 The mixture was then stirredforfoushours,and suli- 1.05'partsdiammonium phosphate,and. sequently refinedin a: disk typee refiner until better than. 0.70.part'of triethylene glycob(TEG), as.a humectant. 99% of thee pulp (in excesswater), could be shaken. Concentrated aqueous ammonia was then added'd to thcougham 18 meshi sieve. bring the pH ofi thee mixture to a valuee off att least 7.1 Thee resulting, material was then employed as a binder but no:higher than 9.0: 25 for tobacco plant parts to form a reconstituted tobacco. Thee mixture was then stirred' for one: hour and'sub- s}ieet,iu.a manner.similar to that described.in Example.161 sequently refine& in adfisktype: refiner until better than 99% of the pulp (im excess water)cou1H bee shaken Example24 through an 18 mesh sieve. Bright tobaccostemso were washed' in cold water where- Thee resulting material was then, employed as a binder ;.0 by, from about 75 to,80%. of the natural contentt of water- fortobaecoplant partstos formm a reconstituted'tobacco soluble substances were removedd iw the wash water. The. sheet in.a manner similar to that described in Example.16. stems werethene useddirectiy in the wet conditian to make . Example 21 . tobinder as.follows: Brigflt tobaccuo stems were washed i¢.n cold water One hundred parts of water were brought.toa tempera- wheretig- from about 75 ta. 80%u% of the natural content 33 ture of 100° C.,., and1 tothis weree added: 7.00partsby0 weight (dry basis) of the washed brighft off water-solublee substances weree removed im the wash (flue cured) stems, water.,The.stems.werethendriedand.ground andlusedto 1.05parts diammonium phosphate„and' makeabinderas.follows: 0.70parloftriethyleneglycol.(TEG),as~ahumectant.0ne hundred partss of water.r weree brought to a tern- 40 Concentrated. aqueous ammonia was then. added'' toperamre of 100"C:, and to-.this weree addedt bringthe pHof'the mixture toa.value of at least 810:but 7.O0parts.byweigfif(drybasis)of'thewashedbright . nohigperthan8.51_.,~ (flue cured)) stems,. Thee mixture was Ihen stirred for fourr hours and sub-1-055 partsdiammonium phophate, and sequently refined' in a disk type refiner until betterr than. 0.700 part of', glycerin„as a, humectantl 45 99% of ttiepulp (in excess water) could be sliaken. Concentrated aqueous ammonia was then added'~ to through an 18 mesh sieve.. bring the pH of'.the mixture to avalue:of'at.least8.0 but The.e resulting~ material was then employed as a binder no higher than 8.5., for tobacco plant parts to, formm a reconstituted tobaccoThe.mixture was then stirred for four hours and sub- sheet in a manneraimilar to that described in Example 16: sequently refined in a: disk type refiner until better than 99% of the pulp~ (inn excess water)) could be shaken a0 Example.25 throug6.an ,18mesh sieve. In the acid wash trealment of tobacco parts for removal TheresultPng material was.thememployedias.a binder of'alkaiine earth minerals of.the tobacco pectin,.it isnec- fbr.s tobacco plant parts too formam reconstimtedd tobacco essary. to use.quite large volumes of'~ water if it is desired sheet in a manner similar to.tfiat d'escribed.in Example 16. 55 to. reduce the soluble anionn content of thee productt to a Example 22very low level. In this,case,, thee use oP.a cation exchange resin in a closcd.loopsystem with the.tobacco-parts.can BrighL.tobaeco.stemswerewashediacoldwatenwhere- makeit possible too conduct the process withlimitedby,,from about 75.to 80^/0 of the natural.contentof water- amounts oCwater and.acidd soluble substances.were removed' in the.wash water.. The 60 The use of.a resim (such as Dowex50 W) in this.ways stems were then used directly in the wet'condition to make does not att all alter the rinci p p or les of thi f' m o f s t reat - a binder as follows: Onehundredpartsof'~water.werebrought,toatempera- ture of.100° C.,,and to thisweres added: 7,00.partsby weight. (dry basis) of.the washedd bright 65 (fluo cured) stems„ 1.05'~partsdiammonium phosphatc„and' of.theii• natural nitrate ioncontent . . Hydrochloric id i ~ ac s ; 0L700 part of glycerin,, asahumeetants used at.ivttervals to regenerate the:resin, but neverr directly ~ ' Concentrated aqueous ammonia was then addedd to eontacts.thetobacco.. ~ ~ bring tfie.pH of the mixture.to avalue of at least 8.0 but 70 The apparatus uscd for ion-cxchangc extraction of bal- N ~ no higher than 8.5: cium from.tobaeco stems consisted of a 20 . inch diameter. ~ Thee mixture was then stirred' for four honrsand sub- washing colirmn fitted withh a 20mesh~ screen tosupport N sequently refined in a disk type.refincre untillbettcr than the.charge of.stems and a 6.inch.diameter.pyrex'column ~ i 99% of the pulp (in excess water)~ could be shaken filled with 13 ponnd4 of IJowcx 50 W-8 acid-form ion I through an 18'mesh sieve., 75 exchange resin beads.,Tho valvcsand Piping permitted a ment sincee the resin merely serves as a convenient reser- voir oflacidity, continuouslyreconditioninge0luenl'from: the stems for reuse in the extraction. In the following example„the use of a cationexchange resin permits the treatment of stems with a small fraction. ~
Page 177: fiw68c00
c C I PROTEIN'~S AND AMI Presented for' fhe practicing phar- macist isaresume of, . the basic consideradions in proteins and amiho acidsi various combinations of whicli are so widely' used in current. rherapy. by William L. Blockstein Adminif6nMve Assisfanf }o bHe. Dean Scliool of Pharmacp' Unlrl ofPitisburgh, Pittsburgh, Pa., P ROTEINS have been defined' as extremely complex nitrogen containing organic compounds which are found in all animal and'vegetablecells. Theyconstituteay major portionn of the living protoplasm ofthese cells:. '17reyare usuallyrecognized as colloidal macro-molecules with molecular weights rangingg from several thousands to many mill.ions.Obviously theit; chemistryi=_ exttemelyy complpx.. 7"he word protein itself is derived from theGreek word meaning "first" for it is one ob thee most important substances im the organic kingdom and with- out it no.l!ife can exist. • ClassiBcation I. Simple proteins. Naturally occurrinR proteins which oa hydrolvsis giveonly alphaamiho: acids or their derivatives. A.Albumins. Soluble.in waler and co- agulated' hp heat. Otaibumin in egg and serum albumin in blood! B. Glohulins. LnsoluLle inn water liut soluble in, dilute salt solndon. Co- agul3led: byheat. Serum glhbulin in Iblunrl'.. and edesl'in in Ire..mp seed. C. C:lutelinn. In>uluble in water and dilutr salt! snlutianl but ud~uLlc in IYof:20:. !fo• ]0J OCIOBEH. 1954 ~~!0 ACIDSa I dilute acid and alkali.. Coagulatedd by heat. Glutenin. in wheat.D. Prolamines. Insolublee in water;, but soluble in 80 percent alcohol. Gliia• din in wheat and zein iio corn. E.. Albuminoids. Irrsolullleim water, dilute salt solubions,.acid and alkali, and180 percenrt alcohol. Hydrolyzed by long, boiling with, . strong acid. . Elastin iottissues(tendons) and keralin inn hair and horny tissue.. F.. Histones„ Soluble in walerr andd di- lute acid and i!nsoluble in ammania. Not coagulated by heat:. Somewhat basicin reaction because of a pne- dominance of diarminao acids: His- tone.iiu the blood corpuscles of birds. G. Protamines. Soluble in water; dilute acidl and ammonia., Not coagulated - by heat. Stronglyy basic in reaction because of' t16ee large number of di- amihoacids present. Sturin, and sal- min found'in the sperm,offish.. II. Cunjpgatedproteins. Simple proteins linked wilhh nonpratein groups. A. Chromoproteins: Protein linked with a. colored compound. Hemoglobin in blood. B. Glycoproleins, P'rotcin linked with _ a carbohydrate. '.ttncinn in saliva. C. Phosphoproicins. Protein.linked with phosphoricacidl Casein in milk and vitellin in egg volk. D... Nuclhoprolcim Protein linked with nucleic acid. Nuclein found in the nucl6i of cells. E. Leci3hoproteins. Prnlein.linkcd with a phosplmlipid. Not a wel6reeng- nixed group but unrlnulitcdlv fumtd in prutnpla.m. F. Lipoprotcim<. Prnteim linkod with fintvacid. Ex.istenrc• doulnful. but prnbl fuuml'l ini prnUapla.m. !45 I
Page 178: fiw68c00
amplrotcric metallic salt.. Esccllent.for stahi-lizing emulsione. Fairly good suspendingwagent. At t!imee: molds will grow on CSYC. curylen<ions„ so antimolding, agent is reeom-mended', I:elcoloid-4 propyllene glycol ester off alginic aeid, It is intended solely for use.in aqneow, solutionshaving a pH below 7 where it functinn.as, an emul4ifcing. thiuk-ening. stabilizing and.suspending.agent. Solu-tion hasas pH of about 3.5-A-5. Low and high viscosity grades are available., Com- patihle with a wide varictyof materials such as acid'e. other gume• sugars- starches. glvcols, etc.. and mnderatequantities: of heav.y metals at low pH values. Approximat.el}' 1 ~c solu- tion=ares recommended for use. A preserva- titeagainsn mold growth shoul'dl bee used: Elaaao/-Pblccihsd Alcohol. \fianc riseos- itv grades are available: Produces clear col- orle~s. odorless viscous solutions. Onac small amounts of some.sallsare required toprecipi- tate Eliannfl from water solutionc. whereas others wil!1 be tolerated in Iarge. proportions. Borax causes: solbtions to gel. Boric acid.. in -mall quantities- will precipitate Ehanul fnum solutions: howecer•. it is:compatible with large prnlnutions ofl HCI. H,SO,. H\O., H,PO, and other acidsReeorcinolalso. causes gel- ling. Cumpatifilc with: gly,eerinn and glycols anJi aleoholl in fair•ly largee concentrations. Gompatible with wetting agents. Requires mi prr,ercafire: Emuleifn-ing:agent andthick- rner. Liltle pharmaceutical work has been Jrmr-with thi, substance. F-h~nc Flo Siurch-Sodium salt of a starch acid'.d e-ter- lHiph~~ and lowviscositv grades arr• a.ailaLlt•.. ProJucess clear so]utions, viis- rnu... pl1, 6,0-7.0. I.owtemperature hratingis nq,uirr•di to pr.nduce. vtl.utiuns: R'ith increa~e -.f arid or alkali.. viscosity drops and! ciarnty dr-rn•a•~-•: Tbic is, marked below pH :315 ,mdl al.... .• p1'1. ]0!, Tol'prate, rnn=t .alt. in rn.,d'rralr eoucrntration~. Clear. B-hi Starch i. alliirke•nnr; •labilizingandl su.pending e".m. l.ittb• pharmaceutical work. bas been Jbnn,-wiih thi.-product. Sequire~anei-mnld- i.n, aFcm: I:rrn-1'lpdruaypror{rl .l-R-J2-lF,hina Fran- ular pnwdrrr wbich gnl'atinizcs ini walr.•r he- 8/1 Iween 75-100~° C. Aqueous dispersions are alkaline,although addition of acid tode- creasepH has littlee effect on viscosity,. One percent salt has a tendency to gell this staroh.. Litt]e work has been done with thiss starch in pharmacy. It issaids that ithast good thickening and, suspending properties. Merhylcellalose-Man-vviscosity grades arem available;; ranging from 15cpsto 40000 eps.: The higher viscosity grades are more di8icultt to put into solutibn. It iss neutrali, odorless, tastelesss and'' inert. Solutions are clear and colorless. Compatibllewith acids, alkalies,, a]coholl and univalentt ions. Poly. valent ions tendl to precipitate the gum. Heat precipitates outt methyl cellulose fromm solution,, hue onn cooling solution is affected again. An emulsion stabilizer andd suspend-ing.agent: P4oduces extremely viscous muci- lages and pastes. Solutions aree nott normally subjected tobacteria]: decayormoldgrowth... "Cellosize;"fPP H S, (H'ydrozy EthylCellulose)-Afiee-flowing. water soluble white powder,. high ini viscosity- Thee powder. contains:N.L.T. 60 o bydroxy ethyl cellulose,, about 7c5w•ater and about 35°0% of amixturea of 11a. HPO,, and iQeH,PO;- It is: very sollrble in waterr and pH ~of' sol.utionss iss between. 6-8..Solutions are compatible with most gums, andwill tolerate 10-15% alcohol...Little or no pharmaceutibal work has been done wiihthissubstance. It is recommended as a thickening agent't in externall use preparations: and. is relatively non-te%ac: A1gin (Kelgin)~-Sodium salt of polly- merized d>mannuronic acid; a sugar:acidlex- tracted froma giant kelp pl'ant in the Pacific Ocean, Functions satisfactorily with- in the pH rangee of about 4-10.. Compatible with glycerine, wetting, agents, alkali metals. someaciil..s and withh alcohol up toabout 25 % . concentratiun. Alkaline eard~t metals and, =ome heavr ntetalk gclatinize: nn thicken alginn erdution. in Inwer~ concentrations. Heavier cnncentratinncprecilpilateit: Below pH 3.5 alpin preci.piiates out off solution. A ^ Prc•servative is, recomntended against mold groeTli. Algin fonms extremely thick and risrous nthuilm=. lfay be u=cdl as an emtll- -Cond.ded oo.pega 907 AMERICAN PROFESSIONAL PHARMACIST
Page 179: fiw68c00
dn,xybenzal'dehyde (15). The pig- mont used in the present study has. bren `aharacterized by Chortyk.andk coworkers (5).... . . . . . -i'yrolysesofthetobacco-.isolates yieldedd phenol and. m--and p:-cresol ass the major phenolicc products. Table I showss the levels:of phenols obtained fromm thee high molecular weight tobacco.leaf eonstituents. The . pyrolyses were conducted at 700°C under a stream off nitrogen.. Turk- ish.tobacco'h was pyrolyzed under the - same conditions for comparative- ptrrposes- The high. levelsof'phenols obtained from the. Turkish. tobacco. .,pyrolysateas compared to thatob- taiioed't from cigarette smokeconden- sates (14) can be attributedin part too thee absence of combustion proc- esses under the anaerobic experi- mental! conditions used. Tobacco pig- ment was the most efficient't phenoll precursor* of the materialstested. Cellulose was aa poor ptienoll precur-sor, while 1'igni~nn and pectih (from tobacco) were relatii•elygoodphenol- formers: Cellulose„ lignin, pectin andi poly- c galaeturonic acid obtainedl from com- merciall sources were pyrolyzed un- der thesame.conditions (700°C, Ni). The trend obsekvedd was similar to thatt of' the analogous tobacco iso- lates. Lignin wasthemost effective, and'e cellulose the poorest phenol pre- .rcnrsor. (Tali1e 2). Thehighe yield of cresols f'mom: wood; lignin.is com- patible with proposed structural characteristics of lignin-.. Pyrolysis off o-n-propyl phenol (Table 3'), which may be similar to. thee type of recurring propyilphenyl unit in lig- nin,, yielded o-cresol. as the maQur product,., fission, occurring, primarily between C, and!C4 of the.sideehaiin. Isoeugenol,, which like o-n-propyl phenol.,,maybe, regarded.as a model lignin compound, similarly gave risei to high levels of cresols upon pymolyais. , ' ~ Certain other4ow molecular weight materials related to polymeric carbo- hydrates were also pyroly.zed' under identical conditions.(Table 3). The data indicate that carbohydrates, whether in the form: of.f mono-,, di- or' polysaccharides, arerehatively poor phenol precursors, although the behavior of tobacco leaf pectin un- 1ikee pectin fromother sources.is anomalous and difficult to interpret. To determinee the optimum. condi- tions off phenol formation: from wood lignin, for example, the latter ma- terial was pyrolyzedt at temperatures ranging, from 300-900°C, both in 4rc rhe pcrsrnt t.d •„ tAr tnm pHennt precvrror denoter any nwterid t~,ar an RriolS'rir ir ronvrrfrd Aa plrenaQ tAe dc9rerof ranvervau ir a n,rnmw o/ tAeerdafive eP:cknr,r ol o.efwn precurrar. Table 1'. Phenols from high molecular weight tobacco isolates I'soPato pyrolyzed Phenoh(mg/100'g) 700 C, Nt Phenol m-and p-Cresol*' Pigment Lignin Pectin Cellulose ..Turkish tobacco"* 94 80 63 41 67 . s0 6 2 105. . 25 •Meta and' parv.neevfin~e uot rernlvu6le 6, GLC. ••Detd Jvv 1'vrkGheebuwv are..AOron jor, comparveivr purpores. Table 2: Phenolsfrom non-tobacco high molecular weight substances `Substance pyrolyzed OOPC, Nz) Phenol Phenols(mg/100g)', o-Cresol m-and; p-Cresol' Wood'~ ligmin: 61' 30 117 Polygalacturonic acid ~~ 14 7 8 Citrus pectin ~ ~ . 12 6' 8 Cotton (cellulose): ~ ~ - 6 2 .2 Table 3. Phenols from certain low Compound py,rolyzed - molecular weighf materials Phenols (img/100 g)' (700°C, N''2) Phenol o-Ciesoll m-and p-Cresol o-n-Propylphenol. 1,6000 13,400 - lsoeugenol 305. .. 415'. 1,440 Cellobiose 31 ' 9' 11 Glucose 27' 71 5 Glucuronie acid 18' 4 5 nitrogen and in air.. Total phenoiie residue was determinedd after each pyrolysis. Figure 3 illustrates the pattern obtained. 11Taximumn forma- tiomof phenols.occurred in the500°- 600"C region. In.an atmosphere.of air, thepatterne wassimilai° to that obtained'ind nitrogen;.but, yields were lower. Measurement of yields of in- dividuall phenols (guaiacol, phenol, m- and p-cresol), at various tempera- tures indicated that.500°C was gen- erally the temperature of maximum formation for thesecompounds,e as well~.. Although the present report.evalu- ates the' phenol-forming potential of certain high molecular weight ma- teriats,, it is necessary to consider thee relative proportionss of' these materials in.leafbefore reaching any conclusionsg regardingtheir contri- bution tothephenol.content of ciga- rette smoke.. Whereaspigments is by far the most efficient precursor;, it amounts too only 4% of the dry weight of leaf (5)~ Carbohydrates, including cellulose, comprise: about 50% of the: leaf(8)y but are.gener- ally'poor phenol precursors.Lignim, another good' precursor,, amounts to 3.5% oftheteafl' (8)'.. . Preliminary experiments in this laboratory indicate thatt many types of compounds may servee as phenol precm-sors, suchh as' certaini non- volatile organic acids. and proteina- ceous material. We can only con- clude, at this time, thatmany proc- essesmay beinvolvede inn phenol for- mation,., and that structural require- ments for phenol formation may be minimal, andd may depend, to some extent, on temperature and gaseous environment.. Summary 00727543 The effectiveness of eertainn high (Tobaeco. Science 38).
Page 180: fiw68c00
~suntes complet'e freedom from non- pectin chemistry hasresulted from Chem..Publisliing Co., NewYork, 777 galaeturonide'e constituento.. the estimation and characterization p..27' (1940),. ~ Physical propertiess ofl pectins;, of the.combined pectinic acids rather 6. Hirst, El L.,. J. Chem:, Soa., 70~ their sensitivity topolyvaleat ¢ations,, than: thee individual pectinic acids. (1942). ~r and their solubility are greatly do- 7. Jones, G, and Bradshaw, B. Cl, ... iendent on the methyl ester content. Conclusions J. Amer.. Chem. Soc:,. 55;, 1780~ JI'~ Thee water soluble "freee peetinic Two t (1933). 1~ aids"' from lamina and midribb hadd pectinic acids andepel tiniccacidsf de- 8- Kertesz, ZI I., The Pectic Sub- amethoxyl content of.8':5% and. 7.5%rived from protopectin-wereiso- stances, Jnterseience PubPishers; respectively. The metlioxyll content lated fromm tohaccoo lamina and mid- Dnc.,. New York, p, 44(1951).. of the pectirtic acids derived from rib.Thecontentsof. bothpectinie. 9• Latzkor, H., Schultz, T. H., lamina and midrib protopectin were aidswerealways'greateria.themid- Owens, H..S. and Maclay, W. D~,, of the low-ester type, having 4.5% rib than.in the lamina. J_ Phys. Chem. Soc., 68,, 1628~and 19% methoxyL The lamina and midL•ib"'freepee-(1946).. Viscositiess of toliaccopectinic 10. Longsworth, H., Owens, H. S.,., tiuioacids" appeared.to be homege-aids.weremeasured in sodium chlor- neouss in compositionn when hydro-and Maclay, W., J: Colloid Se¢.,1,. ide, since.the.chargeeffects ofthelyzed.and.examined'..by paper ckrom, 313 (1946). heteropolar molecules are reduced by atography and by moving-houndary1'1. Masters, A. T:,, and~ Richards, G. the presence of salts (9). Allimeas- electrophoresi's.. Their equivalent N., J. A'ppl. Pol. Sci:;-8;. 813 urements were made at pH1 6 in, order weights were 18fi and 187', respec. (1964). to.reduce any tendency of the pectins' tively, which~ indicated a high degree 12. hicConib, E. A. and McCready,, toaggregateo of purity. The viscosityaveragemol-R• M•, A'nal. Chem„ 24, No. 10The. intrinsic viscositiess were db- ecular weights for the "freepectinic. 1630'(1952). termined'd graphically by plotting thee aids"' from lamina and midribb were. 13. McCready,. R'.. M.. and~ Gee, M., reduced viscosity as aa function of 5.8 X.10"andl5.5. X 10'. Agri: & FoodChem., 8, No. 6eoncentration (Figure.2)~. Thee heterogeneous pectinic acids 5110 (1960). The molecular weights of the.pec-derived from thee protopectin of to- 14. McCready, R. M., Jeung, N., and tinic acidswere calculatedj; using the bacco laminaa an& midrib weree com- , I4laday, W. D. Abstracts ofexpression (,l)= 1.4X 10-° M'"' posed~~ of D~-galacturonicc acid, galac- papers,. 114thMeeting. A. C. S':,d derived by Owen.s. et' al (17).,, for Portland, Ore., p~ 5. (1948).. ectinic aeids.. Table 4 summarizes tose, arabinose, and traces of glu- p cose;.xylose and L.rhamnose..Separa- 15- McCready,. R... M, and: McComb;., the intrinsic viscasitiess and thecal- -tion of thesepectiniee acids into at. E. A.,, Anal. Chem,, Eb', No. 12', culated molecular weights of the.to- leasEt threee anionic components by1986 (1952). baceo~pectins.. electrophoresisalsoindicateds non-116: McCready, R. M., Shepherd, A. Th i id t b ti i e o acco pec n cc ae s weree uniformity. Their equivalent weights, D„ Swenson, H. A., Erlendsen, i irther definediby their optical rota- 215 and 228 were hi her than those R. F.. andi Maeta};. W., D., A'nal'. ~ ~ion. Thee methodof McCready andl of.the"free pectinie acids." The vis- Chem.,, 28,. No. 7, 975 (1951y. j Shepherd' (16) was modified and.thed cosity average molecular weights of 17. Owens, H. S., Latzkor,. H., optical rotationi of tobaccoo pectinic derived pec y, j _-;,- __ ..,_a ,,,,,,,,_ t,. _, tinie acids fromm trie. la. Schultz, T. H., and'.hfacIa W. D:, marizes these measarements... Thee high specific rotationss indicated thee predominancee of' alpha-gl'ycosidic' linkages (11). There was no~signifi-cant changes in rotations of.tobaceo pecticsubstances as the pH valueswere.varied from 1.5 to.pH 0.5. Below pH 1.5, due.t.apartial aggregation of the pectinic acids,, an apparent ten, dency for therotation to increase was observed (21),.. The need to separate the "free pectinic acids'" fromm thepectinic acids.derived from.plant.protopectinm cannot beoverstressed.,Theyaredif:- ferent' in chemical composition and, physical properties. These two formss of pectinic acids, asfound in tobacco„ probably coexist in plant tissue: inn generall Iit is felt that! much. of thee conflicting evidence in the field. off mina and midrib were 4.4 X. 101 and d~ l4166r. I,,ILeI¢. Ouc., eo„ 1040 .. 4.0 X~. 10+: (1946). Acknowledgement 18; Pyriki, C. and Mueller, R. Berichte Inst. Tabakforsch., The authors wish to thank Dr. G. Dresden, °J; No. 2, 306 (1962). Gudnason, R. T..Bass, and A W:. Leik. 19. Reid, W. W. and Wills, H... 0'.,, for their assistance: Methods in Carb,. Chem., Aca- demic Press, 809 (1962). 20. Schultz, T. H., Lotzkar, ffi,. Literature Cifed! Owens; H. S., and Maclay, W. D:„ 1. Aspinall, G,.0.,..Canas-Rodrigpes,A.,, J. Chem. Soc., 4020'(1958).. 2:. Bishop, C: T.,. Can. J. Chiem,,. 88,1521,.9, (1955)... 3. Coleman, R. J:,. Lenney, J. F.,. Cbscia„A. T:, and D4~ Carlo, F. J., Arch. Biochem. Biophys., 59;, 157 (1955~)!. 4. Dische, Z.,, J... Biol. Chem.,, 167, 189:(1947),. 5. Hinton, C. L.,, Fruit Pectins, . Research Lab., Albany,Calif.,, J: Amer. Pharm. Assoc:,. 41'.,, 251 (1952). 21. Schultz, T. H: Lotzkar, H.,. Owens,..H. S., and Maclay, W. D;,. ,T: Phys: Cliem.,, 49, 554 ('1945). 22. Speiser, R., Hil'.IJ;, C. lI. and'.. Ogg,, W. G., Ind. Eng. Chem:, Anal. Edi, 17,.507(1945)~ 23. Stark, S. 14I., Jr., Anal:, Chem., 22,,1158 (1'950')'.. (Tobacco Science E.GO)
Page 181: fiw68c00
8,435,829' 17 18' pumpla be used either'for uecycling waters from the ineachcasethickenedtoaviseous.masswhichisecidence stem charge through:the column or for separately regen- that t'hee pectin had' been solubilizedL The slurry was cast crating the resin with.hydi'ochloric.acid solution. at aa thickness of 30-50 mils and dried to form sheets. The Iho operation, fifty pounds of'stems were place& . in the binders formed in this way were tested (o determine their washing columnn and rinsed withh cold waterr until they 55 physical properties. These properties are shown in Table were nearly free of water-soluble material. Then,, the ef- V below. Thebindcr was used.asthe adhesive in asand:- fluent waters were diverted through~ tNe ion exchange bedi wich type reconstituted tobacco sheet. returningg by gravity'toy the top of'f stemcharge.. When the aqueous extract.from.one pound of'~ burley stems. was8dded t0: the recycling',waters,g a.pH'Of betlVeem 1'.5 and 2Lfi: 10 . TABLE V.-PRORERNEa.OF BINDE R.FI16xr MADE BNACC D wassoon attained. During~ theoreatment,e the.waters.flow- WASH PROCESS hlg from the resin column were monitored for their cal- E,amPl,_--------------------- __ 28 29 ciumm content. (Ann appreciabled' ~- se precipitate ftomo 50 ml.. ofresinef8henttreatedwitliammoniumoxolateandmade pti ..----------------------------- 7. 1 v:ri.a 6Leetwt, gmJft.............. ._. 4.64 i'!8. 1.]55 basic'.withanlmOrllxindicatedt'hattheresiRwas:Satuiated.lg,Neutrelleunonegeut_._--___..- Cone. 15%,KOD 15~No0il withcalcium and needed' to' be re enerated withh dro-_ NB'Ott' g ' y Pitegretor Count_._.._....__ 4V e6. ee ohlorfcc acid.) After sixteen hours oPoperatiun, and.one Peromnt Mak[ure_.......__.__.... 11.5 lLa 12.5 re neration of. the ionn exchan e. resin, the treatment. Pe"entEmnx°°lon`-."••°----- •oe m. to ge g T`n't1,.Ke:lm ------------------- a.aa a:miee wass consideredd complete:. A subsequentt analysis showed 'Lbm1le.CoefBdent.,KgAln. that the calcium contentt of the stems had been reduced 20'. ao~i c:cemdahi~ gm: emilsd- in_: i asmu 0.63 to less than.one-sixth of'f the starting valuee of 415% CaO. The~e stems weree rinsed twice with coldd distilled water,, pressed lightly,andlredried in a tobacco processing oven to a.fmal moisturecontenttof'about.4%j . and'ground to Imthe table the terms;have the:followi'rtg.meanings: pass; a.40. mesh sc:eem Whem a smalf sample of'f this 25(1q, Integrator Counf.isproportionalllo tlieareaunder powder wasstiired with a4ittle'.cold ammonia, it dispersed thee stress-strain curve ceeurded by' an. Instron Test Ma- immediately, forming,a stiff paste. Hlins. The.resulting material.was(hem.employedas a binder (2)percentmoisture-Thepercentageofmoistureconr for tobaeeoplant parts toformo a.reconstituted tobacco tained in.t'he entire sheet, (wet basis)~. sheett in amanner similar too that.describedlin Example 16. 30 Q3')PercenC elongation-The percentage elongation, at 26. breakage; on anInstron Test Machine. Example (4) ' Tensilekg./in.-The breaking strength of a 10 Twenty grams of'.tobaceo fines were washed'in 11 liter cm. test strip which is 1 inch wide; an average of I0.strips0 of distilled water to get rid ofI thetobaccoe solubles. The(5) . Tensilee coefHcient-kg. per gm. of basis weight. fiues: were then admixed with /:. N hydrochloric acid until. 3;1. (6) Work coefficient gm. cm./sq..in.-Work coefficient the mixture had a pHH of1.35. The'. pH was checked on aa is proportional to the product of the tensile strength and Beckman'pH machine andl thecurrves were also plottedd theelongation. against.a.titration of.distilled water.. Example 311 After titration„ the acid waswashcd off the fines with The following ingredients were mixed into.900 partso6 three.400:m1. portions of distilled water:,The:fines were40. hoewater and heated for 3 hours's at 85°=90"C:, main- redisbursed.in 400 m(I. of'distilled water and.sodium biF• taining a pH of.7.0Fby adding,small!amounts.of aqueouss carbon.atee wasaddeds to bring the: pH to 7. The slurry was ammonia., cast att aa thickness oE30~50mils'and driedi to form a Parlssheet and'the resulting sheet was used as thee adhesive Mixed manuEaeturnng byproducts and scrapto- binder.in sandwich type reconstituted tobacco sheet. baeco __________________________________ 87..9. 66 Diammonium orlhophosphale. (DAP) --------- 5.0. - Example.27 Glycerin ---------------------------------- 5.0 Twentygramsy of~ tobacco flnes were washed.in I liter. Corn syrup. --------------------------------. 2.0'. - of distilled water toget, ridl of (he tobacco solubles.. Potassium sorbate __________________________. 0.14 The fines.weres then admixed with 1. N hydrochloric acid' 60 The slurry was then refined in a one gallon capacityuntill the mizture had a pH of'1.35. The.pH wass checked! Waring Blendoo for 5 minutes. With'this amount of'.refin-on aBeckman: pH machine, and the curves were alsa ing, the fibrous.portion of the compositioniwas.seeni to be. plotted!against.a litratibn of'distillcd water. well'l dispersed and thoroughly interlocked when examined After titration; thee acid wass washed off the finea with' in a dtoplevat. a 1:9 dilution. This examination was facil-a 400m).of portioa off distilled water. The fines were. 65 itated by the addition. of a small amountt of Congo. Red carbonate: was. added to bring the pH to7. The slurry' dye.. Lhickenedd to a viscous'mass, which is evidence thatt the. The composition was cast on stainless.steel's panets with pectin had'beem solubilized. The slnrryw•ascast at a. an eight inch angle knife set for wet film'thicknesses ofthickness of30-50 ntils and dried to form a sheet't and 0.020qo 0.45 inch. and dried on a.steam table:; the resulting, sheet was used as: thee adhesive binder in 60 The wet strengthh of (he films was determined an a sandwich type reconstituted tobacco. sheet. Scott 5crigraph IP-2using I inch width strips: The.cen(er. Examples 28-30of each strip was wet with distilled. water on both' sides. and allowed too become thoroughly wet through (30'see- In.each of these three examples,.20 gms. of'tobaccof ondsor one minute): before actuating the tensilee mech+0. fines were washed in I liter of.distilled waterr to getridt 65 anismt These films showedd the extraordinarily high weOQ' of.lhe tobaeco solubles:Thrfines.were thenadmisedwitti film strength of 140' gramsat.a.filmiweight of 9.5 grams lINhydroehlorioaciduntilthc.mixturehad.apHof135: per square foot. A high wet strength ishighlydesiiable The pH.was.checked on a Bcckman'pkl machine and the ina, thee preparation of:cigarettef filler,.and assures that lhe-I curves weree also plotted againstt thetitralion off distiBedd subseq;uentt manufacturing performancee of this ma(crial (f}, water.. 70 will exceed that of the finest grades.of lcaf tobaeco. Such~~After titralionl theacid was washed off the fSnes..with~ strength isuniqucly' obtainnble im the presence off the 1'hreet00mle off ponionsofdistilted water.. The fines liberated form of pectin described in thisdiselosure:s wercredisbursed in 400 mli of.distilled water and ancu- We claim: lralization agent,.asindicaled in Table V;tvas addedd to1. Aprocess.for producing reconstituted tobacco.sheet bring.the pH to.(he value shown in'Tab1e.V..The slhrry 76 material whichcomprisescontactingconlminuted tobacco
Page 182: fiw68c00
3,420;241 17 12 been refrned.with NaOH„with, sodium carboxymethyl lulose (CMC) and ahumectant; as, is shown in TabIC TABLEfI cel- 11. cordance' with the methods taughtt by lhe-present ihven- tion. The'e results obtained inn these experiments aree pre- sentedinTab]eIVbelow: Testbinder- Controltil nder . ,. TABLE IV 61m~ fitm 6 l Vnlume nf'¢nannlaMd nder mntenal B BatL5wei6ht;¢ms.It:I -----------------. &b &81 Keagent: tobaceopectins rdauture,.per®m....................... - -1t3t4a, Pentasodium tnipolyphosphate'.--------------- M r<nsneeoenewne -. imtranJenslle',si . --. , n -- oas agr -. . a 0~ & a Sodium hexametaPfiosPhate ___ _____________ 5. Elangntlon percent --------------------- --. Ll 41 k W 10 Diammonium monohydtogen ortliophospNate or coelLeleut;gmmcro sq In --- 39:92 b110 (DAP)~ _ __ ]5 ~ tr)nednobacw pectmseccraetemrrommhermp<tmiro. s ' _____ _- Trisodium.orthophosphate __ ___ _ 15 CDiC. (sodtum carbosymethyl ecllulom) aud pulp, ua . Propared tnown tn .euhodsand.eoneatntngedout si ',%eaw. 6Y Dlsoditrmi mnnoh dra y gCn or[hophosphatc_____ 15' <wemktoenimentJsproporttaamtoweprednctotmetensiteaua mdtheelon8auau- ngtb. 16 Dihydmg¢nmonosodium.orthophosphate------ Versene (tetrasodiumsahofm ethylenediamine- 5 Ezample 3 tettaacetie acid ) ------------------------ 15 One hundredd grams of burley tobacco stems'were. covered with distilled'water; leached for 30 minutesand' Example i D '. - then.deained: The washed stems were thenn mixed with a. Oeee hundredd grams of burleytobacco stemsweres solution containing 10: grams off dtammonium.m monuhy-20 covered with distilled'd water, leached for 30 minutes and drogen.orthophosphate'in~600 mll ofwater..Theresultanff drained. A solutiomof 10:gramsof.Versene (tetmsodium sfurry'was heated for fI hour at a,temperature of from 90, salt of ethylened'eamine-tetraacetic acid)) in 600 ml. of' to. 100"' C. ThepM off thee reaction mixture;, after comple-waterwaa add'edl too the stems and the mixture' was made tion of thereaction,.e was about. 7. The entitereactione basicwith',aqueous sodium hydroxide. The resultingg mix- mixture washomogeniied in aSUaring.blendor:,The solidS 25 fure: was then tieatedd for 1 hour at room temperature. content.tvas determined m.be 5%u% by.weight: Theentire mixture (a' pulp) was homogenized in a. War- Two Two grams ofglycerin;f to serve as a humectant;, were iug Blendor and'theselids contentt was determinedd to bee bl6nded with 200 grams oB'f thee above reaction mixture. 5% by weight. A 200 gramportion of the' pulp;, thus Afilm of 50 mil: wet-thiekness was cast from this mix prepared,, was combined with.2 grams ofglycerin, ass a ture. The extruded filin was found tohave thee property 30 humectant„ andd then castt into, a film of 50mils0 thick- of being able too slide off a.surfaee even when.newly cast. nesss by the usee of a Gardiner casting knife. The result-Afterthefihn was partially dried,, it was found that it ant sheet't was foundl to havee satisfactory physical prop- could.be peeled off a plate by hand, while.still'e partiallyertiesand,y upon burnin& exhibited a very pl'easingg wet and then: hung up to dry like'.wefcloth. ThisProperty auoma.. provides definiteadYantages in.n the manufacture of to- 35 Example12 baccoproducts.. Physical testss weree carried out on'the: driedd filmi thus Green brightt tobacco leaves were soakedd in isopropanoll prepared and were alsoearried ouet on, acontrol. filmm toremove.sugarsandchlotnphyll.Themidiibwasstripped'o made by using conventionally pulped tlobacco.planto parts out of the leaves leaving', the web..One thousand gramswiths sodium carboxymethyl cellulose (CMC) asthe 40 of the'web (82 gralns on a solids basis) were: placed ih: binder.. AA film of binder as made inn this example' was- aporcelaim buckeOand covered withh boiling distilled burned an& wasEound to give a pleasant aromatic smoke:. water containing 9,3' grams of! . diammonium monohydro- 'L'he test data.are'givemia Table 111. -. gen orthophosphate(IDAP). The DAP was added on the .. basis of 10 grams of DAB' per 100 grains of stems (which. ' TABtiEiri4containedl 12%% moisture, by weight). Thee resulting.mix'- 5 nu b il d l h f Trstbinder- Conttul almm bmder-mm Binder ....................................... (1), Basu welght;. gms.lf0.t............... --....... - 15.9 3.8 bioistuce, percent--------------------------- 14.3. 1L 0 Tensile eoelncicnt!'~__---------------------- ai3 0:87 Ihstrontellsiln, ps.id;-----__--_------_--_ 2.0 3.3 ' $longatiuu, 'rercvltt~---- .-------------------- -- 1S 11 4I. Wdrk eoeinclent; gln: em./sq..iN------------ -- 31.0: 51.0 t'Bamd on,totol solution (tubacrnpeetin gei tormed' in situ). n.CAfC plus pulp. Iig; per gln- of basia x'eight. .-ngg-qu. for a LO cm. tasrstript r iWorkenrlliei<nt is proportimml: tu the product of tlie tensile strength end the elongation. e was o e at ow eat or one hour:,The juice wasthenfirst expressed from the mizture.byfiand..Solids, for: example cellulose and sand, were then further separated from the juice by centrifuging'- Thee clear juice fronu bothh operations was then mixed with70% ethanol to form'a60 gel, whichwash then squeeetd out in cheesee cloth'.. The gel was transfercedd to a Buchner funnelwhere it was washed first with acetoneandlthen with.ethyi', ether. Fi.- nally';, the: gel was plhced in'n aa vacuumm desiccator and dried'- Thee gel was suitable for use in the preparation of'a.reconstituted'tobacco ih.accordanee with the teaehingss of the present invention. Example 13 Burley tobacco stalks were separated, intoeortical tis- sue, woody tissue, and' pith. A.sample ofeach was.s steam cooked with 10% sodium carbonatee for. 30 minutes al~~ atmosphericpressurec and for 20 minutes at 20 p-s.i.g. After Ihiscooking, tlie woody tissu¢ wasstill hard and'eonld! . not be pulped in a Waring BI'cndor. The cortical tissuee and'd pithh weree soft' and: ptdpable. Each of these. ~. Iatler twoprcparations were suitable for use in the prep- 55 Examples 4-10. In each' of thesc examples, burdeytobacco stemss were covered witli.distilled water;,leached.for 30 minutes,, and 60 drained. Onee hundredd gmms of stemss were treatedd with the ngent indicated in Table. IV:. Thee agent was.s dissolved ih~ 6000 mll of distilled watcr in an amount suDicient tomake up;a lOr/o (by weight)') solution. The leached to- bacco. stems wcre'e placed in said solution andl healed in 65 aa steam bath for I hour at a. temperature off from90. lo I00eC., (Except for the exantplc in whichVerxnc was emplbyed. That example was conducted at roont temperature.) A five ml.. aliquot was tilken from'm the: resulting mixturee and mixed with 20 tnls of ethyl alca- 70 hol in a graduated cyhnder whereby a precipitate ofto- baccopectlns was obtained. The amount ofprecipitate in the grnduatcd cylinder w'ass observetf. Ci:teh of these precij>itales of tohaccopectins was. suitable for use in the preparationn of a reconstituted tobaccoshcet in. ac- 75 aratronn of rcconshthted tobacco. Ezample 14 Coarse ground bright stern tobacco fines (30 grams) iiwere' washed Ihurotr_r,hly'iny cold wnter, and then placed~~ina hoiling,Iqucoussoluliinn uf3 grmns.of diammoniummnnohydrogen orthophosphate and cooked for 5 min- utes. The mixture wass then placed im a Nfari;ngBlendor'.
Page 183: fiw68c00
, I h. pr:du.d,v _.4mrBrslim-. .; `4r ciakn+itar •LlidnchaJrs diffrrunx cnedln,t sidr dit^ Truckensnhslanz 'Diese Sfclhode ist ziemlidr Ians;wterig, rleshxlh witd im vie- lan 13elric6rn die fiJy;encle\fA•ILncft• ungcwemlDt. 1,1/!. Die Ili•fraktlrmt•lermrllloda f:ewiiLnlirh tverdcn'n diesog, Handiefr:rktnmeter (Rild. 1) anl;rwe.ndr.t. Das \fi•sson tnitt diest•m Cimiil erfolgt einfadl uud sohnclL uudd crfnrdcrt: kcine.l><•snn- dlren Piudtkrnnhtisrco. Dus C:erift nntVt clie T4stsadre aus, tlali'misc6ru Tren3it•usuRslam.mtd LiddhredlunFg der Fliissigkriti,u cinr• t•inLtdie Cbsetam3Rigkeit. hu- steht. Das'.:\Icsven heruht deshalh, auf der Beuhadt-ttrng der Crcnrlinic der'.' vollrn Reflekliun: \Vcrdt•n. einigc. Tropfen dt•snt priifcnden Materialss an d:tsIPri.ma tlcs Ceritc rehradn nnrl wird' das Gcriitt milt c l h a l teu„ as Li rt. Ge d gesdllnsscnrmPtisn impaar gcgen sn ist das Liddfeldd iln Oktdar inn cinen hclleren nnd', einen dtmklcrcni Alisdmitrt't gett•ilt. Dir: Crenxlinie der dunlllr,n und hellen Fulder ist ulie Grennllnie dc•r tnt.rlenReflesiun, Den amSdrnittpnnkt dtr Crenzlittic'c mndd der Ckul:uskala ahg{•lesene Wert ist der prnzen- tuel9e Trockc•nsabstkminhalt: des gepdifden Siuteriitls. Dieses Crcit w-ird. den versdtiedenen wleRlicreidten . enlspredmnd immrhrer•en,AnsfGhnmgen,ltergestellt. , 22 Alessen der Yiskositut Bi5 87. DasFlessen dLr \3skositiit einer Sdtlichte mit Kapil-9i0 40 Iar-uud 1Lu gelvi.skosimeBem, ergil* keine reprodua.ier- 9:5AS 6aruu Werlc•; weill dic Starkemit: diitsen Stethnden 10p~ 4-1 10s. 5nl gea•issenmali n auf,^,esdalhssen wtrtU und siec demml-11051' fFdgc audi thrt Visknsrt•rl' andrrt IEs w-ird mit diesen I1,557 A1el5geraten 7CwcdN dre srdr stiindig:.iindernd'e Viskn•t-I'-.0. BL 1-'.5. 65'. tiit der im Ceriit hefindlidien odar durchllie6enden 1;,069: blassc im. binmrntt des $lessens, d. h. der auf die ioIaR- 1:;.5 71 ' mc•nge tunf \le6zettt hezogene DundtxdSnittBwe•rt er-1i'-n 75. ' If,S79 mitlelL 17ie ,•urspriinglidle'ViskositTt derinr de•m Apparat eingefuhrten Sliirkelusrmg ist immer hiiLer als wahrcnd oder nadt dernJlessen, Ausden erlirierten F.ikenheiten dhr SCirkeschliditen geht hervor, dafl ihre Viskositat mit't keiner hetrieblidi „praktisd(° und„einfadten" \lelhodegenau ermittclt cvercll,n IFamr, da die \'iskosiHitt drr Starkesddithlcn. I tp5 r cPr 19,0 8.1 ^-6.5 161. 15.5 86 2710 167i 1610 90 27;5 lil 1s:5 93 28•9 174 17;0 97 "-8:5 178 17;5 10® 29;5 I81i 18;0 10b 29;5 I85 18;$, 107 30,0 " 188 19;0: 110 30,5 192 14.4 1 113 310 0 19. 6 20,0. 111 ' 31,5 I99' "-0.5 1?W 22,0 201 -1L9 1^3 3?.5 407 245. 127 ' 33,0 510~ 92,0. 1Jt 33•5 '-l3 22,-a 135 : U0 ?17 ^3,0 13E 37,5 +-20 7,5. N?' 35.0 ~~7. JI',0. 146 3515 ^37' 2405. 149 . 36:n ^-3t. 25,0 152 ' 86•5 205 25,5 156. 37;0 :.08' -6i0 160 . . 37',5 2a"- . 36:0 8{5 38,5 ?468 Eim anderesoinfadtesutnds praktisdies Gcrat zur En- mitllung, <lcr SdHidtteviskositatt isl ein Reagenzglas. Dieses',wird so mit Suhlidtte gefiillt, da6 in der Senk- reohten 10 ntm Luftsdridrt zwisdten~ Reagenz}!lassttip:- sel'l und SdtlidtteoherRiidte verhleilim: Die' Priiipcrson hall dasReagenzglas. in der cint•n und eine Stnppuhr in derr anderen Hand. Sic drelit das Re^agenzglasplole- lidr um 1S0", umzum erreiuhen, daR' die Luftlilascc in die H'iihe geht, gleidfzeitlgg eird die' Zeit; . gemesseni diedie Luflbfase henfitigtl um wicderr ihm altc. (hPidr- sfe) Lage eineunehmem (Rild 8):. Je htiher die Viskwi:- IGtt ist, um so mehr Zeit hrausht dieLuftblase:, Zwi- sdmn Aufstiegszeit nnd Viskasital besteht natiirlidi keeinte linearef:orrelatiDn; die' auf die heschricbe.ne Weise.erzielten Vkertesind nur als relativeKennwerle anzusvhc•n. Die Ikidcnciwahnten, Methoden (Ausfluf3uit„ Auf- stiegszeit) liefern alsokeinen ditekten VisknsiUilswerl; sandem cinen k1cl3.vcrl, ans dem aufdcn.Fisliositiits- zustantl de.r'Sdilidrlekisung gesdllossen wertlen kann. Dem Ilctriclispraktiker raidrem, dicse Werte aus, um (lle Rrhaltung dur optimal'cn Rc•,tiiehsaerh'altnikse kon- trollicren lizw. einen' snfdsn Zustand verwifklidren zn kbnne n. . I D•r fiir rlktisdcc Uetisnngrn ent.vidcelte Viecugrapli L ~ p . ..I (Rild 4)mgiclriert dir Vlsknsitiitdt•r / iisuna; w{iLrend t a 'dcs I,tcamtt•n Verdidaungsvulg;mgs, letlndr niddrt in sondernn in \1P \V.i`.rlt•n (Vlscograp6-1•:ih- C cln 1\trtt•n , _~1 N hctlen) Dits.lA},rvtrierpiapitr :st.vnn U hra' 1(1(ID oingc•- ~, lLilt, dlt• jitwult);en VS'ettc sindl nur monrentuue und \littclscrrte: itlid e k •i t n ~ a ne ze ~. Aus d'rm \cisengntph-DiaKCUnm, kaun das V.itrhalten 1.11A der Stiirkcliisnng'iln Itinlilidc aaf tipnzenli:uinn, Tem- peratun und Zeit erkannt't warde•n, elit•nsuRliunun R9idcsdrllisse' auf das Vcrhaltcn dcr Sl'nrkr unti•r hv- slimmfen Retrichsverliiiltui'ssom und auf iLre Ifraudr- harkciCgrzugeu.wcrdru. An6rrdonr k:um-nnhaud vun Vist•nsigrannncn: Stcllung' d:¢rr gcnnmmrn .ew'dru; nb kcio cinzelne[,, d. h. Ikonstanler unrl rmveriimderlidmr Wert ist. Trolzdcm wcrden in den Relriehen vcrsdtiil- denee einfadtn :Viihemngsmc•tlunlen zttr lvrmittlung, der Sddiidrteviskositiit angewrndcC. - Eine dlrvan ist die in liild •3vt•reuudr:mlid'ne, heider' ein cinfadresGlasheRifi' vorta•endel winL Es wirrl in, eRe Sdtlidttc getaudtt und snLmgc mWCr deren C)her.fliids. I,•challcn• I>ii es'S die Sddiddvlennprrntur :m>;e° nnmmea hati Dann niknmt man d'nsmit Sdrhdrtee gefiillte Gefii6.ltermu nntl mifSt die 7.ril, in Sckrrnrlem (s) die zur fintEecrung,heuiiligt wird. Aus diesem \Verl kamt die Visknsitat im Gentipoiies (cps) aus Tafel TI e•ntnummen. w'crdcn: Tstel 1.Visllaslrfit im Vurhzitnii zur AanUr.Oxcit
Page 184: fiw68c00
3,435,829' 5 6 alkali.i metal phosphates and! most particul'arly, thee atkali, to obtain the desired. pH of', the solution during treatment- metal. orthophosphatesand'tlieammonium orthophos- The ion exchange resins.may be usewd andlregenerated in phates, such as the ammonium.phosphates and' ammoni-accordhnce with the usual practices for such resins. gen orthophosphate, diammonium monohydrogen ortho- 15 to about 35` C.. and,, preferably, distilled water is..- phosphate;.disodium.monohydrogcnforthophosptiateand'employed. When this wash stap is.emplbyed, suf6cient, `_. dipotassiurn monohydrogen orttiophosphate. : water should be used to remove thecalcium.and magne- . In a secondi embodiment, the eross-link destroying. 10 stumsaltsof the acids,, whichsaltsh are formedl in the ~ reagentt actss by sequestering, thee calciumor magnesium,, above-described treatment;, thus,, there should'd be at least `thereby removing the calcium or magnesium atomss by 2~ volumess of water per volnmee of the mixture resulting. - ' formingag complex therewith.. Suitable reagents of this , from the acid treatment- The wash water is separated,d type include any sequestering agent whi& will form a from the tobacco by any suitablee means, forexample,. --complex or chelhte with thee calcium and/or magnesium, 15 by conducting the wash in a centrifuge, filter press; Buch- ' " therebyremoving thee calciurtr and/or magnesium and'ner funnel', or anyothery appanatuss from which Iiquidsmaking them, unavailable for recross;ISnking with the pec- can be subsmntiallyremoved from solid, materials. _ ." tin. Illustrative of such sequestering agenas are ethylene- •In summary,. in the fitsf, step of the first embodiment . dismineteroaacetice acid and similar amino acids, alkalitbe treeatingg agent Z-R attacks the calcium andJor mag- .. nxtal, polymetaphosphatessu& as {etra-metaphosphates, 20 nesiumn cross-links off tobacco protopectin and, forms & 'hexametaphosphates and . trimetaphosphales, pyrophos-precipitatewhieh is a salt of calciumandlor magnesium„ - . phates.andtripol'yphosphates, such as.sodium~hexameta-tfius removing the calcium and/or.r magnesium from thee phosphate„ tetrasodium pyrophosphate andi peatasodium protopectin and: f'romthe solution. In.the: firse stepp of tfietripolyphosphate: Thee mechanism which occurs when aa second embodimeny.e the treating agent Z-R is ase. -. ' sequestering, agent is employed is the formation of a 25 qucstering agenFwhich forms a chelnte of.the magnesium - chelate; calcium~and magnesium. ions.are no longer avail- and/on calcium: from.the tobacco prntopectinand.makes. . ... able to combine with.the pectaleions in.solution. Many. the calcium: andJon magne.siumm unavailable for recom- naturally naturalty occurring amines and peptid'es araal5om effective - bining, with the pectins. With certain reagents, such as as sequestering agentsfors ealciumm and/or magnesium. I7AP; thee first step of thee present process may comprise Representative examples includeal'aniue, aspartic acid,. 3o a combination of.the mechanisms oBthe first embodiment .. glycine„ glycyl glycine,, glutamie' acid„serine, tyrosine and and the mechanism of the secondemhodiment'.. In the first di-iodo-1i-tyrosin. Amino acids that are effective as chelat- step of the.third embodiment ofi this,invention, the treat- . ing soaubilizing agentAinclude beta alanine, N,N,diacetic ing agent Z-R is an acid which attacks the. calcium and/. : acid; amino barbitutic acid, N;N-diacetic aeid;.2~-amino- or magnesium cross-links of the tobaccoprotopectino and benzoicc acid„ N.N-diacetiec acid; beta-amincethylphos- 35 forms the soluble calcium and/or magnesium salts, which phonic aoidi. N;N-diacetic acid;: beta-aminoethylsulfinic are then washed' away from contact with~ the pectins,. •adid, N,N-diacetic acid an& etliylenediamine-tetraacetic In the first step ofleach of the first two embodiments, ' acid. The pH.of'.thisreaction should', preferably, bebe-the pactinn which results isin wndition for release from tweem about.4 and about 1'0and thee temperature should,, the tohaccocell structure, R in Equation I being a ;. preferably be betweenn about 0" C. and atiout 145°' C.40 monovalentinorganie.cation such ass sodium..In theefirst um orthophosphate,. sodium orthophosphate, potassium Preferably, the mixture resultingfromtheg acid treat-orthophosphate, sodium ddfiydrogen orthophosphatc, am- mentt is-then washed with, water. This water wash stcp~ tnoniurn dibydrogen orthophosphate,., potassium dihydro- f' is preferably conducted at a temperature of from about. • for a period of from about.I'minute to about 24hours. - step of the third.'ea,bodiment,d theinsoluble pectiracidi ~ A cross-link destroyingneagent may alsa.m function resulting from the acid treatment must be reacted with, partially as a precipitating,g reagent, in aceordancewith . ann alkalinee materiali beforee it is's in condition for refease. .; t&ee first embodiment, andd partially as a sequestering frorwthe tobacco cell! .strneture-.. ~ agent, in accordance with the second embodiment. Such a 45 The acid treated pectinsare placed in, condition for .'. reagent, for example„ iss diammonium ntonohydrogen releasee by bringing the miztureresulting from the acid orthophosphate (fJAP)y.whioh i3a particufarlypreferred treatment, and preferably, after the waterwashdescribed. ~. material;in accord'anoe:with the invention. above, to a pH offrom about 5.Otoabout10.5 and„pref- . In a.third'.embodiment ofthis.invenGont.f the cross-link erably, from about 6.3 to.abqut 8.5,.bythe addition of.~destroying reagentt is an, acid wash which forms thee re- Go an alkaline material. Suitable alkaline materials incfude .~leasedbut insoluble free pectic acid and soluble calcium ammoniumm hydroxide and alkali metal hydroxides, forand magnesium salts. Generally the acid wash will com- example, sodium hydroxide, potassiumhydroxide: and prise an inorganic.acid; suchashydrochlorie acid, phos- ]ithinm.hydroxide; and alkali metal salts, suchas sodium - . phoricacid;c sulfuric acid or a~ similar acid, whichh will bicarbonate, sodium~ carbonate, sodium phosphate,. and' form soluble ealoiumandm magnesiumm salts underr the 55 similar salts to convert.the pectic aeidito a solubleforme following conditions. Hydroehloric.aeid and sulfuric acid The alkalinee matCrial mayy beanye water-solublecom- are parti'cularly preferred. The acid may be employed as poundcontaining.a monovalent inorganie: cation and ca- 0:25 N to 5.ON solutions,.Iiut is preferably employed as pableof producing hydroxide: ions when dissolved'in 0:5N to 1.0 N solutions. The exact dilution.n and amount water. Thetemperalure ofi this stepmay be from about; to. be employed will vary with the particular acidwfiich Go -I' C. toabout45:° C-,, but is, preferably, from about'. Isused, it only being necessary that suffrcientt aci0d be 15, to. about 35° C. The alkaline material is preferahly present to convertt thee calcium and magnesium present inn theformlof solid particles or in the form oDa solutioni - inuhe tobacco being treated.to4he calcium and magnesium having a concentration of from.about. 5 toabou6.50%o salts oftheacids;Thef acid treatment. is preferably con- Oncethrtobacco pectins havebeen liherated: from the.~ dueted,at atemperature of.fronr about -I' C. to about GS tobacco,,, by the removal off thee ealcium and magnesiumto 50°'C:.The acid treatment comprises reacting'the tobacco , cross-links,, theyshould be released' from the interstices.%] parts with the acid until the resulting mixture has a pH - or the tobacco. That'is, they will be made available lowN offrom~ about 1.0. to~ about. 2.5.. Preferalily; thepHi is thee solution or suspensioni or, in~ certainn instances, they%] brouglatto from aboutl1-0loabout 1-7„ the most desirable will be merely deposited on thee sunfacee of the tobaccoEll pHbeing between L15' and 1.55. This treatment will ;0 particles. This comprises the second stepp of the process.ZV generallybeconductedfromaboutl0minutesto24hours, In embodiments 1 and 2 this release or second stepmayN depending in.parton thesize.of Ihutobacco.particles. The be accomplishcdiconcnrrenlly with the first step by react- acid conditions whichh arc necessary for this embodiment ing.withthe solution of the.trcating reagent. In.embodi- ofthe.invention maybeachieved by the use of ion ex- ment 3,.howevcr,,as indicated above„the insoluble pectic change resins which may be used; with suitable recycle, 75 acid resultingfrom thea treatment should bee reacte& with
Page 185: fiw68c00
ble energy I Characterization of Pectic Substances in Tobacco Stelns. b .. ... . . . ased un Pe of ap- o 'tss uIC its Chrisman the prod- atory for nd Linda H.26, 314 , or Nutri- nas City, 2133. \nalysis,'^ 1, 22.038-S., Dept. ni G. L„ 'vL 5, 285 phemiafr. '. Illinois h,S Gl, Herring; A. . Agr., 50): 1962). 0):, Guelph, 3uelph;, iry Scii 963). 965). 955). a^henr. ,23(2), HarryJacin, R. T. Mosby, and JL V. Fiore Thee inereasedd importance o8 reconslirtuted'o totiacco`leaf in cigar and cigarette manufacturing practice has increased'.d thee utilization of' tobacco stems. This, paper describes a method ofextractimgand, fraction- ating the.pectic substances in a number of cigar-type. . tobacco.stems.and shows differences: in the amount ..andd kind of pectic substances found im cigarette. .`andd cigar tobacco stems.. The monosaccharide.-,~components of the isolated pectic-sulistancee frac-. Fectic substances have 1'onglieenrecognized as an important constituent of tobacco. Nurnerousre• <:ports may. be found om their extraction and', de- termination in tobacco leaf (Neukiergand',Sthever, 1931:; ,.Wah1;1950; Baconeta11,.1951; P)tilipseraL.,1953; Pyriki and Molflenhauer,,1962;. 1963). However, few specific reports deal withtheiroccurrenceh and properties inn to- baeco stems (Philips and: Bacoq 1958;. Richards,.1962): - The increased importance of reconstituted tobacco flea in cigarand cigarette manufacturirtg practice has.resulted in am increase in the utilization oftobacco:stems. Thus a more complete and quantitative.study of the peetiec sub• stances ih.tobacco:stems.appeared warrantedl. - The objective:was todevelop a.more detailedfractiona- tion scheme forthe quantitative separation: and ebaracter- ization of thepectice substances, and to, . apply this scheme to the study of cigar and.cigarettetobacco stems as wetl as individual members within these two types of stems. EXPERIMENTAL -sampl'ePreparation. The tobacco stem samples.weres ground in a Wileymill,.and the fractiompassing through a standnrdU.S. 120screen was used for the investigatiom Moisture contents were.determined (in: triplicate)) by dryingg thesamples at 105° C.. for 2hours.in a forced draft:ovem Alll results are reported om a dry basis unlesss otherwiseindicated: . Fractionationn and Analyses. The fractionatioa, scheme used in the separation and characterization of the pectic substances imtoixtcco stemsisshown in. Figure 1. Ten grams(ps is) of'.stemipowder was suspended in 900 ml: of 80% methanol at.roomt temperature:. The.suspen- sioni wass shaken vigorously for a fewmiautes andl then, filtered tlirough a Buchner funnel under housevacuum, usingWfiatman No. 1 filterr paper. The wet.fidter cake wasresuspentted in.90 ml. of 80 % , methanol, shakenld and refilRered as before;. the process was repeated fora: total of fiveextractions. Thecombined filtrates, (fraction A) were analyzed forfiree carbohydrates by thin-layer chroma• tography(Jacin. and Mishkin„ 1965). Thefinal filter cake was. driedto constanft weight in a forced draft ovenn at. 105°' C:,, and the lossih weight wastakens asthe. 80% methanol cxtracutbles. .. ResearchDisision, American Machine. c&FoundryCo:,.. 689Hope .St.,Springdale; Conn.. tionss were identified by thin-lhyer chromatography, '. andlthe galacturonio.acid imeachh fraction was deter--=tnined quantitatively by aa colorimetric~ method.. -Infraredlspectra offilmsprepuredlfrom the isolated! pectio.fractions showed dilTerences.in the degree.or esterification of the: pcctic materials. The isolationi procedure and.thequalitittiveand quantitative d'ata. ` obtained.are discussed. . - The dried solids.fromthe preceding step were suspended' in 100 ml. of boiling 90% 2-propanol'acidified to OLIN 'with.hydrochloric acid. The.mixture was.agitatedifor a: fewminutes, filtered as before, and the wet filter cake was resuspended in a fresh portion of acidified alcohol and! re- filtered. Thisprocess was repeated for a total of five.ex- tractions.The combined filtrates.(fractiom.B) wereanal+yzedi for calciumm content by a ehloranihcc acid method (Crlick, 1963), The extracted filter cake wass suspendedd im about~ 40 ml. of boiling:water, agitated for a few. minutes, and filtered' asbefore. Thisextractionprocesswasrepeated for a total , of 10o extractions.. The combined filtrates. (fraction C), were made up to 500 mll with, distilled'~ water.: The galacturonic acid content off thiss fraction was determined' - on an aliquot using a modified carbazole method (Bitter~ ' anct Muir,. 1962). Another aliquot was hydrolyzedd with -- 0.25N hydrochloric acid and the hydrolyzate chromato- gmphed on a thin-layerr plate (Jacin and Mishkin, 1965). - The remaining solids were suspended in.100 ml. ofdis. -- tilledwater and titrated with, constant stirringto pH 8.0 - with.0.lNsodium.hydfioxide.. The volumeof alkali used ". wass recorded„andithe millieqpivalentsof acidity pen granr. of starting material (stem), was~ calculated. This~ neu- tralized suspensiom was then transferredd to a round'.- -bottomed flask equipped with aa reflux condenser andd re- fluxed for 16'hours. The mixture was.filtered„as before,. . and, thefiltercakewaswashedwith1050-mLportionsof . distilled'.water. The combined fiLtrate.and washings.(frac- tion. D) weree madee up: to a.1-liter volume: witb distilledwater and subjected to the same analyses.as fraction C. . . Ground.5tem ~80%Methanol_ Extract A Residu\e~ \ Acidified' 2-propanot Extract B ~ Residue \ Water ~ FJnract C ~ , Residue~ C ~ Dilute alkali reflux: Extract D N -s Residoe ~, Ammonium oxalate re0ux Residue ~ Extnact. E (~ ~ Figure 1.FraNionation scheme for the separation ~and cliarac- terirAtlOn of pectic substances VOL. 15: NO, : 6, NOV.-DEC: 1967 1057'
Page 186: fiw68c00
3,435,829 9 10 gumscommonly used as bindersQor tobaccosheets such as. application of'the mixture as a bindingg materiall for ree methyli cclCulose; sodium earboxymethyl'l cellulose, guarr constituted tobacco. This maleriaP was sprayed ontopof gum,, loctlst bean gum, or alginates,. altkough it ispre- an undercoating of tobacco dust, of an 80 mesh size;,which ferredl to minimize or eliminatee such additions in ordcrr had beenn dustedloma wet't belt. Another eoat of', the tobaccoo to obtain.a product.which most: closely resembles natural dustt was laid onn top of the biudcrt In gcneral an appara- tobacco. 5 tus similar.toa that dcscribedl in IU.S. Patent 2,734,5~.13' The product fromm treating the mbaccoplant parts in was employed.. As in said patent, the reconstituted sheetl accordance with the methods of:the present invention may was dried and wass then humidified to the dCsiredl mois- be cast directly anddriedd and cuo into particulate ma- ture content. The control in Table I was made in a con- terialsimilar.inphysicalformto.ordinarysmokingtobacco. 10 ventionalmanner,usinga.relati4ely9argeamountofChiC and so usedl preferably miaed' with tobaeeoleaf cut or. in proportion to~ the: pulped washedtobaccod atoms. The shredded inthen usual manncr:.The product may becast test,datat as observed aree recorded'in Table It in sheet fonnr, in blocks or as threadsor otherr shapes, as desired. An importanu use;, tiowever,, of the prepared com- posite slurry or easily moldedl isolated peetinaeeousmass1J is:asa.binder foe ground to4acco andTor the:e making of. . corres ndin tobacco roductssuitables for smokin Pn g P g• Sheet material of widely differentt properties may be 8ormed, by . suitable variations in,the manner oflforming• ow O name h o d an .pro c .compr i ses ft i h eg compos i t d dU C n te. pp 6t . TABLxt Bemple' 9hea4.l 6lteet 2 shooG.3 Control.l lmrt onte r-------------- t71u 1110 Ip2e n2.a Moisture,percontl...... -,- 125 10a 12.7 u.4 Tensile;Fg.lin.3 _......-.---.--, .90 .9g ,EO~ L2 FoWedTensile,lfg,(In!_____._ .GL Fa s1. ,.. Etanration,pement._.-_.---.- 2.2 23 2.m . 1.9 BurningBete,mgJsec!:~-_-_-- 1.8 L8 L9~ 1.7 r PanCxtC er partsor total tubaccu sollds in the slurry (ineludin¢ slurry onto a movingg bell: andapplying aa layer of drytobacm pectins4. ground or fragmented tobaCCoto thewete adhesive sur- °Theporesatnqe.otmuisturecontainedintheentiresheet(wetbisis) . sThebreakiiT strength of a.t0.em. test strip which Is l lnchh wide; face. If desiiedl tlleremagbefiistappliedltothehel[ aanavera artusaips. layer of the tobacco,., follbwed': by a layer of the binder,. One ¢id;. test smp creasedd by appseanonof a~ 4so grntn weight [en 3a secands. and thenn a topp layer. ofthe tobacco• Variouss additives 25 r Thepercent elonesuon,.at bceadrage, mr.ttte instron.Te.st vadune. may be included withthe ground tobaccoo such as flavor-' Frce Plamotess/ burning rote.of asinele test strip, in air. ants;.plesticizersandaromatic substances. The web isulti- The reconstituted tobacco sheets made pursuant to this mately dried and then suitably moistened and'd rolled up: example were. shredded and made: into cigarettes. The Such.h methodsof formingg continuous sheetss are known tesl, eigarettes,, as well ass controll cigaretlesmades from generally'in the artt and:d the detailsneed.not be further so standard reconstituted tobaccosheet;.were submitted to a described., Representativee of this procedure is the ap- smoking panel.for subjective testing; The.panel found that; paratus and metlioddisclosed' in U.S: Patentl 2,734,513. the smoke: of the cigarettes made by thee methodd of this Another method of forminga reconstituted tobacco invention was significantly less harsh than the smoke ob• product, with the sluury oftheisolatedf tobacco pectins tained from the controll cigarettes. A pleasing vanillih: as a bibdeq comprises mixing ground tobacco thoroughly 35 odor wasfound to be transmitted into the aerosol phase therewith into a mass.of.dougb-likeconsistencys and then of the smoke from the test cigarettes made employing re- casting the mass in sheet form onto a moving belt surface . constituted! tobacco made by the present invenlion, followed by drying and remoisteningg in.accordance.withEv,ample 2 the knowm procedures. Representative of'f this proceduree iss the apparatus andd method disclosed'.d in U:S. Patents. 40 Fifty grams by weight of burley tobaccoo stemss were 2,705,175 and. 2,769,734. , Obviously, thee reconstituted thoroughly washed ih about 5 liters of cold water for three. 'd tobacco stems ~ were . then mixed with '. tobacco may also betormed by molding or. other suitbblo hours. Thewash¢ means. SOO.grams.0 of water having dissolved therein 5 grams of Aparlicularlypreferredlaspectof: the present invention sodiumcarbonate.Theresultantmiiture;:eontainingabout comprisesemploying, as a,lbinder or directly, the mixture. 8% solids;; wassteamed.und'er atmospheric pressure for. of tobacco andd tobacco pectins.which have beenproduced 't" 30 minutes and under a pressure of 20 p:s:i.g•.for anaddi- iu situ„ without any separation steps and without. thetional 20' minutes. At thee endof this titute,, the mixturee necessity for any additional adhesive materials: was.allowed to cooliand the liquid was separated from the: The:following,examplesareillustrative;.e solidmaterials.Tttesolidlmaterialswere.treatedinacider press to recover ass much, ass possible off theremainingEiramplc1 50 liquid. The liquid was added to.a previously prepared co• Tobaccoo stems (110'parts) weree covered with~ cold®gulant bath which consisted ofethanol and hydrochloricc waterand leached for th hour. Thewater was then de- aerd„ in an amountt to adjust the pH of the coagulant too canted and discarded', A. treating solution, made from 1 aboue 1.0. Theresultinge mixture (which had a. pH of part.of sodium carbonate dissolvedl in.G0parts of water,about 3.0) was alternately stirred and allowed tno settlee was added; to the.leached parts:. TLismizturewas heatedi 5' for a, period of'f two, hours. Aft thee end of this 'time tlie: at itsboiling,point for 30:minutes atatmosphericpressuret mixture was strainedrthrough a cloth sieveand thefillrateand then for 20! minutes at 20 p.si.g'. In the course of this t'•'ass discardedd leaving a solid;e gel-like mass; consistingg treatmenti, the tobacco pectins weredissolved.e from thec essentially of pectinaceous materials combined with ap• tobacco parts. The entire. wet mass. (pulpp nlizmre), . was proximately 10 partss of liquor.. The yield of pectinaceous dried and' groundd inn a\Varing:lllcndor so that it would. 60 materials was154'cy. based upon the dryweigh0 of the possthrough a.. 50 meshh screem The resultant materiall starting tobacco.o plant parts. The mass was observed to be: had gel-like properties and was thixotropic in nature:, thixotropic, soluble.in water at. a pE£.of about 6 andd solu- Tothis.material wasadded 2 parts of glycerin;, to.serveble in. a sodfum carbonate solution.. as a humectant. The pH off thee resulting mixture was ad:- Thetobacco pectins thus isolated'd were quite impurejusted.to Gby tho addition of a solutionn of 10% hydro- 0' and had acolorcharacteristic.of tobacco. The solidlmass.0. chloricaeid:.One.gram of sodium.carboxymcthyl cellu-was.then redissolved'.in a sodium carbonate solution and'.Q lose (Ch1C)) was added too tho-mixture, giving.a propor- the resultant solutiun:was..poured into an acidificJ ethanol%3 tion of about 11 part of CMC to10 parts.of totall solidsbalhsimilar to~ the coagulant bath used' earlier. The re-N . in the mixture. Sinceit v:as-0esired to uselhismixmre ascoagulmed solld.wasobtained by filtration and dried in an~ as ra ed tobacco UinJer,ylia ChfC was em lo ~ed in onder70 oven at 1056 C•. The dried tobacco pectinsweres in th~ p y p} f'orm,of a opaque, subst:mtiallycolnrlesssheet. When theN, to adjust the spraying qualilics. The mixture of (a) treated. sboct waspulverizcd; a whilce powdar was obtained havJA tobacco plant parts, including, the liberated loHaccoo pec- ing adistmet and pleasing,odorsimilar tovanillino tins, (b) the sodiumcarboxymethyll cellulose and (c)I Ten grams uf:the:dried tobacco pectins:prepared abova the glyeerin bad a viscositywhfth was suitable for spray 75 were swclled in: 100'ml) of cold water. 1'he mixture was,
Page 187: fiw68c00
~ .Jrrr r1\ ]errLlM5 t_1 V 'I U {1 - 1'Diipl: Ing. KdkolyRamaszeder C it ForschungsinstitufifOr die Textilindllstkie, Bbdapest Dlcstr.a:a.1ssrT.ntas.rmu.a ~ Die standige' nhjefitive Priifirng der Qu:rlitat gesddidrv teter. Came ist ineinem modcmenfRetrieh fiir die Sidtrnmg, eines reibungslnsen Benduktionsablaufs. un- erliif3lidi.. Anstellhvom suhji+ktiver PriiGmethoden sind soldle anzuwcnden,, die die Qualitatlt des. Sdilidttens allein aus der Camqualitiir undl der. 7.usammenslel- lungg der. Scldidttemassee ganmtieren. Die Eigensrbaften der zahl'reidlen Sdrfichtemittel wei- dren.sehr vonefnander ab. \'om diesen Eige,nsdiaftenn hangt es letztlidr ab,, fiii weldic Textilrohstoffe turdl unter weldton Bedingungen (Konzentmtlon, Tempera- trausw:) Sdtlidltemittel cenrendet werden kbmien.. Fur einen Betricbspraktiker isft dieKenntnindcr Sddichtemitteleigensdtaften auBerst wichtig. Er kanm nitmliclr z.B:. fiir eine Kotte erst't datin dhs ridStigrSdJichtemittcL auswahlen, wenn ihm dessen Eigen- sdlaften bekanntt sind und diese sich genau reprodu-ziere.n und tnoglidrst einfach priifen lasseu.. Das Priiden des Sdrlichtens.kann naell fnlgenden vier Cesidrtspunkten rmterggqliedert.werden: 1..analytisdte Prufunf,ren.. 2. dasPrilfen emt Sehliditellisungen, 3,.das. Priifen von Sdrliditcfilmen, 9. das Prvfen der gesdiliditeten Came. 1- Annl;tiseNe Pfufungen . WiII'l man bci einem gesddiditeten.Cam', die Herkunft des. Sdilichtemittels, best'immmn,, muf3man zunadtst die.Sfaterialzusammensetzung des Cams kennen: Man kann alss sideer annehmen;, daB' Banmsvollgame mit einer Art St5rke (odermit wasserliislidien StoffemwieP6kvinylalkohnl,. CAIC usm,) i gesdiliduet wurden.. Die anal;-tisdie Priifung erfolgt; am Carni selbst; od'er an der w513rigen L'osung des gesditidrteten Textilgutes, dlc' aus dicsem extrahiert wurde: Carne knnnem gc- pruft werden,, wenm.n sic- ungeEarbt sind. . 1.1. Nadtweiscom.SdilidnemittefoufAlgiimtha.sis LLIi. Die Maas-Prohe Die. Schlichtee wird mit Wasser oder. 1°.'eiger kalter Sodalosung vom Textilgutt gelost.. Die Lrisung..vird misdllie0end filtriert. Das Filtrat wirdd dann mitt ver- diinnter Snurender K'alzmm-Chlorid-Cosung beltan. delty, wodurdt sich eine.AusRNlung bildet. Letztere er- halt man jedbdr andi,, wenn pektinartige SdtHchte- mntel vcrwcnclct wurden; desbalh wird eine Arisdre Ldsungg mil \f ilgnesiumsrdfat rersetzt Bfldtrt sidr jetzt keine Ausfiillun„ so bandelt es sich umiAlginat,.wah.rend, hei', cinm PAktinsddidrlo 3r9agnesium-Phkurt'aus:- gefallt wird., 1.1.3. CarbazolproRe Moist farbeu sidr AlFin:rtcbei lemperierdcr Einwir-kung von, Carh:¢nlSdiwefelsiiure rot an. Die Sdilidrtc wird mit sodahaltigem Ci!asser vom'Cam gclbst, d6nnn gibtC man ckr. Liitnrg', kunzuutrierte Sdiwefelsliurc za und! enviirnrt' (lie Liisrm ~ fin, Wasserbad rml,efiihr 20 blimdem lant„ darauf verset¢.t man die Liisungmil eiirigen Trnpfrn tY,nnloiger itllannlbaltiger Liisung:. 1.1.3. A1cDowell-PioheDiese Probc ist audt zum Nadisveis selrr geringer AI(;inatmengen I c10000 gemignet. Di6Sddidtte wird mitwiiBiiger Sotlilustmg vom C,vn geIiist, dann wirdl DIgO zugegeben und amddlrBend'wird filtdert.:5 mt f C)L7- Z,[ 4$,E Tk L E L Y SD"/f~I ~ y ,'9'- ..3. 9 S. .fo / des Filtrats werden mit .5'. Tropfen einerr alkoholisdeen Liisungtles Farbstoffs Nadnblau versetzt (I Toil Nadribl!mt in 4000 Teilen 50°.[nigem: Athylalkohnl ge- Itist). Dcr NkdltlN:ru-Farbstoffwirdl vom Alginat ah- sorbiert: 1:4'. Nacliueis von Z•eRufose waxsediislidlc Ffetfiyl- zeltulose-Dcriuate mie. z. BL. T jlore 1.j.1. Cerbsiiureprobe Die Sdrlirhte witd vmn Carn mi3 Wasserabgelfist und filtriert.. Dem FilitraC wird'd etwas 5°Veige Cerbsiiurelti- sung zugesetzt. Ira Cegeuwartt von Zellulbseillier-liil- det sich cin weifk• Ausfallung; (Eiwei6artige Sddidi- tpmittel reagieren -in ahnlielier Weise. Pohnimd- Alkoliol wird sdSwadt opalisierend. Zellulose-C1ykolat - C\PC - bildet keine Ausfiillung:) 122. Direklfarbstoffprobc. Ein ausgetrennter Camalischnitt wird auf einen Oh- ;ekttragCr gelegt und mit einer 0,05°,!eigen'. FarbstofE- Ifisung, von Siriusblau C, Chicagoblau 61R'B oder Dia- minreinblau C FF betraufelt Im \tiroskop kann dann gut beobadrtet werden, daf5 sidr derZellufoseatherein einigen Sekundena verfarlitt und vom Cam beinalie aliheht 1:3. Nadnuis von Zeflulose-CIakofatem. 1.3'.1., Ausfallungemmit kationaktiven Stoffen Der waBrigen Lbung eines gesddiditeten.Tesrilgutes wird eine kationaktive'L'dsuug,nnter slandigem Sdiiit- teln zugetraufelt: In Cegenwart vonZellulose-Clvko- lat (C3(C)hildk sich eine'.rveifle flodrigeAnsfzilnng. Polvacrylate und. Metacrylate fallen aus,. Zellulose- ather dagegen nidrt. 1.3..2., Kupfersuffatprobe Der walSdgen Liisung, des gesddidrteten', Tevtilgutes wird 10n/°ige Kupfersulfatltisung zugesetzt, wonadt sich eine wei0eAusfaltungbildet, dic sich in.. Essig- saure liist. Audr Schliehtemittel anf Polyacryl- sowieMet§ervlat- basis fnllenaus; sind jedodtin. Essigsaure unl6slidr.. 1.4. e\radlmeis von eiwei]lartigen Sdiliditemittbtn 1.4.1. Ninbydrinprolie: Ess wird cinTrnpfen 1°/oigee w0rige Ninliydrinliisung auf dass zu priffL•nde Cam qetr.iufelt, ansd:dicBend wird der Pkiifling mit einem 1'.00 °C: warmen Bugel- eisen 10 Sekunrlen lang, getmd:net. Die Eiweili- sdilidite verfiirlitt sich bl'nulidr. Die Tempcratur des BOgeicisens darfkeinesfalls 110 °C uhcrsteigen. Vor der Priifung',ist.es vorteilhaft, die EiweiOsddiilue alt- zubaucn, was am bcsten diud$ Kodten mit Natrnn- linogc erfolj;t. Brirn Priifcu' d6r cchliddemitttllhaltigcn Liismeg wird w.ie fotgt verfahrms: Die Probe wird mit T0P/oiger 0 NaOIIsLrisung I(I Mmutcn l'ang gekodnS:dann wirdsie Q mit ve rdiinn.terEvslti.Iiuro. auf cinem pH von 0his'7%3 cinge stcllt Ausdreer LOsrmg cvcttlbn 3anl bis 3'm] in eum Riivettegebmcht und mitt zwiilf Trapfen ~1°/°igcr wGf6rigqr Niuhydrinlusang versetzt,, danadl ~w.ird I bix^_ hTinuten Inng l,tkndS6 Nudt langcrcm ~. Stehut verfnrbt sdt dlic Liisung' hliudidr-violelt. L.4:?. Iliuretprohe Der Pnufling wiid mit ciner venliinnlen A7aO11- SOlnn°r Webca Textlroeredlu°q swt - I11a60 395
Page 188: fiw68c00
-V 3,411,515 13 14 Example: 15 99% of the pump (in excess water) could be shaken Burley tobacco stems (;'h pound)', werecovered' witNthrough an. 18mesh,sieve: distilled water,, allowed to~ stand several hoursandi the The resulting, materiafl was then empl6ycdas abinder waterdecanted..Thisstepwasrepeatedseveral.timesand for tobacco plant parts to form reconstituted tobacco fmallythestemswerey covered. withdistilled watercon- 5 sheet in a~ manner similar tu, that d'escribed in Example taining.50m1. of concentrated HCI andlll:fl overnight at 16' 2'4° C. Example 18 After standing overnigtltt the acidic water wasdecanted Burley tobacco stems weree washed in cold! . water and the stemss washedd repeatedly free of HCII until thewhereby, fromm about. 75 to 80 % off thee natural content wash'water gave no precipitate when treated with sflver 10 of water-soluble substances were removed in the washnitrateh solution. The stems were then covered; with. dis--.- waten The.s[ems were then used diredly in the we[.con- tiBledwatcn containing 15 grams of sodiumcarbonate: and ditionn to make a binder asfollows:lcft overnight at 24°C. The pH'f ofthesample; the fol- One hundred'd partss of water. were brought to aa tem- lowing monning;, was8.8. The stems were swollen and' soft and were easilydisintegrdtedwith the fingers and the lu perature of ]90° C.,. and to lhis were addedt 7.000 pantss mixturecauld he.homogenized'and employed,as.a binder by weighr (dry basis) of the washed'burley stems, 1.05 inreconstituted tobacco. parts.dianrmonium phosphate, and 0;70 part ofi a glycerin, as a humeclanf: IExample16 Concentrated aqueous ammoniaa was then added to The apparatusemployed im.this'uperimcne.was.larSe: 20 br'ingthe pH of the mixture to a,value of at least 7.11 scale equipment„comprising, a 200 gallon.conical.bottom,n but no higher than 9~i0. The mi open top, stainless steel tank, fltmdi witht a. Cowles high xtttre was then stirred for . one hour andl sub• shearr mixer... sequently refined in ~, a disk tygee refiner unril bettzrthan. Onee hundred'd and fOrty.eigtit gallons of water were 99%of the pump (in exieesswatcr) could be shaken pl'acedin the tank and heated toatemperatureof.207°F. 25 through an. 18 mesh sieve. One hundred and twenty-eigh0 poundsof Nrigfit totiaccoTheo resulting material was then employed ass a binder for tobacco-plant parts to form a reconstituted tobaeco. (mille.d'' to~ pass a B: meshh perr inch sieve) stems weree sheet. in a.manner similar. to that described In.Example added;.whileuperating the.Cowles mixer.at.a low speed. 16 Almost immediately. after theaddition off the tobacco,. nine and one-quarter poundsof diammonium monohydro- 30 Example.19 gen orthophosphate (technical grade) were added tothe mixture. Ammonia (assaying 28%, by weight NHs)) waa Burley tobacco stems weaewashed in cold water added to adjusCthe pH to7:1. The mixing speed was in- whereby, fmm about 75 to. 80% of'the natural contentt creased to1700r:p.m. After a period' of. 3'3 mihutess the of water-soluble substances were removed in the: wash. temperature off the mixture was 194' F. Mosrt of the "5 wateu. The stems were then dried and ground and used particless in. the mixturee were soft.enough, to besmearedl too make a.bindcr as follows: by hand and the mixture bad a jelly-like consistency: The. Onehundredi partsof water werebroughC to a tem. mixingg was continuedd for 1 hour toobtain thee highest peratuse of 195' C.,, and& to thisweres adtled: 7.00 parts possiblee state off disintegration, although a 15 minute pe-by weight (dry basis) of the washcdl burdey stems, 1.05riad appeared tobe su(IlcienCfor thispurpose. 40 parts.diammonium phosphate, and 0.70 part of iriethyl:The viscosity ofthef mixturee was found to be10;400, ' ene glycol (TEG),-as a humectant. cps. and itssolidss content wass foun& to be 8.05%% byConcentratedl aqueous ammoniaa wass them addedd toweighti .. bring the pH off thee mixture too a value of att least. 7.1. . This mixmre was then employed as a binder, being but no higher than 9.0. pumped through a filtertostorage.tanks and subsequently 45 The mixture was then stirredd for one. Nourr and~d sub- sprayed on tobacco by the melNodand'd equipment de- sequentIy reNned', in aa diskk typee reflncr until better eham scribedin iU.S. Patent 2,734',5P3, It,wast applicd aethe 99% of the pulp (inn excess water:)', could be shaken, rate of 3 grams per squarei foot. to form a reconstituted through.an. 18 mesh,sieve. tobaccoo sheeTt having, the following physical properties: The resulting material was then employed as a binder b0 for totiaccoplant; parts to fnrma reconstituted' tobncco, Basis weight;; gms./ff.sr---------------------- . 10.2 sheet in a manner similar to that described in. ExampleMaisture content (ipercent byweight) ____________. 13.0 16. Tensile, kg.lin-------------------------------- 0.82 Example 20 Fold tensile„kg.lin---------------------------- 0.82 Rlbrk-to-break, gm: em:/fts T.... ............... 16.0 35 Burley tobaccoo stems were washed in cold watec -+Weiglit or au', me in~reJim,ts, r„rmdine tobuceannlp es- whereby, from about 75 to 80% of'the natural content. smn:dls<rrrr nr mobavrc. of'~ water-soluble substancess were removed in the wash.. eCmnputM by nn Intrpintoc nttaclied to. theQnxtrov.Tenslle Trster. water. The stems weree then used directly in, the wet, con• Example 17 ' ditioo to make a binder as follows: Oo One hundred parts of water weree brought to atcm- Budeytobaceo, stems weree washed inn cddd water perature of.195' C.,.and tothiswere added: 7:00partswhereby, from about.75 to 80% of the natural content by weight (dty basis)) of the washedd buricy stems, t.05of water-solublc substances wereremovedl in the wash parts diammonium phosphate, and 0:70 part of.trictiiyl_-watcr. The stems: were thenn dried and ground and used ene Slycol (TEG), ass a humectant. tomake a binder as follows: 65 Concentraced aqueous ammonia was then added to One hundred parts of water were brought too a tem- bring the pH ofthetnixture toa value of at..least7.1 Q pemture of.195°C., and to.this.wereaddcdC 7.00 parts buCnohighenthan 9.0. by weight (dry basis) of the washed burley stems, 1.05 The tnixture was then sti~rred' for one hour and' sub- ~ parts diamlmonium phosphate, and 0:70 part of glycerin, sequently refined in a diskuypek rcfinur until better tNan N ass a humectanl. 70 99% of the pulp (in excess water)) could be shaken N Concentrated aqneouss ammonia was then added to through, an.18 mesh sieve. bring the plI of the mixturee to a value of at 1'east.7.1. but The resulting materinl was then employed as a binclcr~ nohigher than 9.0: for tobacco plantt part.sto form~ a reconstituted tobacco. Themixtive was then, stirred for one houn andsubse- sheet in a manner similar to tllat described in Exntnple qnently refined in a disk type refiner untill better than gf16.
Page 189: fiw68c00
50'. 0 I 300 I PY'ROLYSIS TEMPERATURE, iNIITROGEN f I r ri 400 500 600 700 800 ( °C )' Fgure 3.,E6ect of temperature on pyrolyfic yield of tbtel'phenolz from wood lignin. molecular weight materials, isolated from tobaceo.leaf,o to producephenols pyrolytically was evaluated. Pigment was shown to: be the best.phenoi pre- cursor and cellLlosee the poorest. Commercially' available lignin,peetin andd cellulose followed aa trend simi- lar to their tobaccoo analogs,.Iignin wasthes best't precursor, and cellulose the poorest. Carbohydrates were gen- erally observed to be poor phenol precursors. The. optimumm tempera- ture of phenol forxnation from wood liRnin was shown to bein the.region 500400°C. Yields of phenol were higher in an atmosphere of.nit'rogen than.in air. Acknowled'gment The authors thank J. H. Bell of P. Loril]hrd Companyfor.providing a copy of his manuscript prior to publication, and J. C.. Ard of the: Eastern~ Regional Laboratory for assistance in infrared spectral. analysis. . Literafure Cited 1. Ayres, C. I. and R'. E.. Thornton, The use of a. furnaceteclinique 1 900 for studying.thepyrolysisofto- bacco.. Abstracts, 19th Tobacco Chem.ists" Research Conference, Lexington, Kentucky,.October26- 28,1965: 21 Bell, J. H., A. 0: Saunders and A. W. Spears; The: contribution of . tobacco constituents to phenol . yield. ofcivarettes. Tob. Sci. 1'0: 108-142.. 1966'. 3.Brown. S. A. Chemistry of . lig- - nification.. Science 1341: :: 305-313. 1961. 4.Byetrrum, R.. U., J. H~ Flokstra, L., J. Dewey and C. D. Ball. Inr corporation of formate and the methyl group. of inethioninee into methoxyl groapss of lignin. J: B'iol: Ckc~n. 210; 633-643, . 1954. 5. ChortYk., 0. T., W. S.. Setilotz- hauerr and R. L.. Stedman. Compo- sition studiess on tobacco. XXIII'. Pyrol'ytic and. structural investi- - gations on the poiyphenol-aminoaeid pigments of leaf. BeUr. zur Tabakf'orscla. 3- 422-429. 1966. 6. Christy, M. G', and M. Sam- field.The average degree ofpolymerizatiow . of' celhilose in varioust'obacco: types. Part 1. E'ttperimental: Tob:. Sci: 4: 33-37., (70baCen lCn:aroen .fS.l 1960. 7. Colomliu, P., D. Corbetta,, A., Pirott'aa and G! RuOini: Paperchromatogr.ap}i.y of mixtures of phenolic compomrdA. 1. Chro:- ma tog. 6: 467-474. 1961. . 8. FranRenburg, W. G. Chentical' changes in the hatvestedd tobaccoleaf. Part IT. Chemicall' arrden- zamic conrersiotts during fer- mentation andd aging. Advancesin,Enzrmoiogy 10: 325-4-11,"Lrter- science. Publishersi. Ine., New York, 1950. 9. Katu, K.. F: Sukai and T. Naka- bota. Thermnl decompositioni oftobaccolignin.. Japan MonopolyCmn Centlal Research Pnst Sci- entific Paners 107: I71 17a 1965. . 10:Osman. S., I. Sclrmeltz H C.. Hrernan and R. L. Stedman Vol- atilephenols of eigarsmoke. Tbb.. S ci: 7: . 141-14 3. 1963: il. Phillins-bL..and. A. Et.:..Bacot. The. chemicaU composition of' certain grades of type 11. American flue- cured tobacco. J. Assoc. Ojfec., Agr. Chemists 3~6: 504-524. 1953. 12:.Phillips, 9f,.and M: J. Goss. Chem- istry of lignin. VIh Distillation - of alkalii lignin inn redLtcedatmos-phere of' carbon dioxide. bed., & Eng. Cliem. 24:1436-1411. 1932. _13: PhiSlip=. llI.. F. B.. WfJkinson.and A. M. Bacot.. The chemical com- positiom of~f certain gradess of Puerto Rican tobacco, type 46. J. Assoc..Offie..4gr. Chenrists36: 1157-1165.1853. - 14. Stedman; R., L., D. Burdiok and I. Schmeltz. Compositiorrn studies on tobacco. XVIIS Steam-volatile acidia fraction of cigarette smoke. Tob. Sci. 7:.166-169...1963. 15. Stone, J. E., and M. J. Blundell. Rapid micromethod for alkaline nitrobenzene: oxidation of ligniin and determinationn of aldehydes. Anal: Cliena. 23: 771-774. 1951. 16..Wenusch, A.The: composition of tobacco smoke: Oesterr. Chem. Ztp.42: 226-231,. 1939 (Chem. Abstr.. 33:6524. 1939). . .17. Wright, H. El„ Jr.,,W..W. Burton and R. C. Berry,. Jr. Soluble browning reaction pigments of aged burley tobacco. I: The non- dialyzable fraction. Arch~ Bic- claem.. and. Riophys. 86: 94~10P. 1960. Int 7 of sut der of con ben triI met (R)) and iiu tl obta nlyl rcn. . bon secti cont nern: amic ble ; melh pylp' naph M'ath Stn ty m h+' m. N:14 . *rnllk
Page 190: fiw68c00
United States I'atent Office 3r41115's ;-r Patented Nov. 19, 1968 1 2 fruits. However,, the . addition off cellulosic binders': ftrrtherr increases.the amount of cellulosic material in the product'and.tendsto create.an acrid and biner'smol'e; when thee product iss usedd to~ makee cigarettes': Thenatural'bydro- philic cellbid gumss such as guar gum, locust bean gum, algin: and otherr commonly used materials, such asIrishi moss, haveaddilionalle disadvantages. These materials.con- tains proteins and other materials not found' in totiaccoo whiehadd distinctive flavorsof the'trown:r to tobacco: products during smoking:. Thus„Frankenburg;. in doscrib•ing the use of'various weter-solublepolysaccharides de-rivedi from.plants otherthanr tobacco, teaches that careshoul& be.exercisedlthat they must.be ina,state of refine- menC Frankenbur teach tii th ial ! ., gg es at ese mater s should ABSTRACT' OF THE. DISCLOSURE 15 be free of extraneous matterr containing compounds of' This disclosure relates to a process for producing a, nitrogen, particularlyproteins, andd compoundss of'f sulfur,,, binder composition for usee in themanuPacture off re-phosphorusandthe halogens; i.e., eompounds.giving un« eonstituted tobacco. The binder is made front tobacco~ desirable products off combustion orr dry. distillation.. Such planC.partsand'involves the use of the: naturally occurring refining isoften a very tediousand'ditBcult operation. tobacco peetins,, which are obtained by a processs in which. 20 Thee present invention makes possible thee production an alkali metal phosphate.is employedlto treat the tobacco of improved reconstitutedd tobacco by a method which iss pl'artt parts. The.trcatment involves the destruction of:thef simpler and more effectivee than themethodspreviouslY alkaline.earth metal cross-linksof:the tobacco pectins;,the employed. Thee present method doesrs not require refining, release; of.the resulting tobacco: pectins bya washingg ac- of the binder and is,, therefore, more: easily andleRcientlY tion and the.depositingpf the released.tobacco.pectinson o.~ employed than other methodss forr making bindersamd' ttietreated'plantparts: for nrakingg reconstitutedd tobacco. The reconstituted to- , bacco~which isobtained'in accordance with.the present Thisapplication is a division ofapplication Ser: No: invention needl nott contain any additional cellulose or 557,903:, which was filed on June 16;. 1966, now Patent proteinaceous material which is.forei:gn to, tobacco, since No. 3,253.,541,, and. which,, in. turn,, is acontinuation- 30 the binder whicftis employed may be derived.solelyfromd iirvparC of application,. Sen No. 336,009, which~ wass filed tobacco, and may bee produced in such a manner that ikt on January6, 1964, now'abandoned and which, in turn,, contains no materials other than those which, naturally is a continuation.in-part of:application, Ser. No. 240;1300 occur in tobacco• Thus,, reconstituted tobacco. producti. filed November 26, 1962, noww forfeited,., and application maccordance with t7ie.invention, can.be so.formulated as Ser. No.. 169;995filed January 16, 1962, now abandoned.. 33 to be similar in.physical propcrticsand chemical comp¢- Thisinvention relates generally too a method for thesition.to natural tobacco. prodttctionof an adhesivetobacco composition in which. - The term pecticespbstances t'will mcann those.substancestlie tobacco,pectios within the tobaceoo itself serve asthewhich are found'in manyplanty products;, andwhichcon- binder si'st essentially ofpartially methylated galacturonic acids .. -, 40 joined iu long cbains: During theproductlon and processing ortobaccoprod- The.pectia substances found in tobacco plants contain ucts, including aging, blending, sheet forming,. cutting„ acetyll groups and differ cansid'crabfg from commerciallydrying, cooling, screening, shaping and Qa¢kaging;: con- siderable ameuntss of tobacco fines and totlaccodus[o are available pectins found in other plan[s,, includingg sugar produced.Iltis known.thafEsuchtobacco fines and dustcan~ beet pectins and citrus andfruit pectins. Tobacco proto- be combined.with a binder to.foan a coherent sheet, wbich. 45 pectin, aree uniquely insoluble in hot water ascompareds resembles leaf tobaceoo and which iscommonly referred with protopectinsfrom many other sources's and comprise to as reconstitnted'tobacco. One metho& for makingg re- mainly water-insolublbpeetins'(protopectins). eonsistingg eonstituledd tobacco of'f thisgeneral character is disclosed of lhecalcinm and magnesium: salts of partiallyesteri0ed in United States: Patent No:, 21734,510, whereinn the to- and slighltyacetylated polymers of gal2cturonic:acid, The. bacco fines.and dust are appliedd to a.binder made of.car- Go divnlent calcium andGor maymesium.m atoms act as cross- boxymelhyP cellutose carboxymethyl hydroxethyl cellu- links bo.wecn acid chains, thus making the polymers lose or a suitable:salt thereof. The binder„in:suchcompo- water-insoluble.. As an illustration, the structure of: the sitions,, ranges itonu about 5- o toabout. 509'aof' the calcium salt of apolymer. of'f galacturonic acid can be weight of thetobaccoemployed.,Unded States Patent. No.represented.as follows: ' ss-IL&. rrossllid. QJoo:cLJ~'rcth,6oDorI cooeu-,'oiI ott ~-o ~-c 0. /'14 \ ~t4 r41 ~'ir 1 ~t4 t41 ~. .. _Q-Or-II r:-C-U-C_,t. 11-O-U c-t0 1I-C-O-O-11 11-C-ti ~\11 It/ `it - ~ `&11 _it/ 1~_o brt brr b1r btt Luetr, booorr, ~ 3,411,515 METHOD OC' PREPA RRNG. A RECONSTITUTED TOBACCO SIiEET. EMPLOYING A 1•EC'L"IN ADHESIVE Juhm D. Hind and RoberlR. Seligman, R'ichmond, Va., g assignors toPhilip. Morris Incorporated, New York, N:N:, a corporation of I V itginia No Drawitr8. Application9une 16; 1966, 5er. No. 557;903;, nowPateut No. 3,353,541, datcd'.Nov:.21, 1967,:whichis aeontinuaPion-in,partof abandoned application Ser. No.. 336:,009,Jun.. 6, 1964. Thisappiicatioa Apr;, 28,. 10 1967, Scr. No. 647,278'' I Claim., (Cl. 131-140)) Although pectinsAavc longbe¢ng known as:eonstituents of plant t'issuc,.it has been found extremclydifiieult to.sep- arale peclins from the remainder ufplant contpositions acids and their sodium.andl potasviumsalts; derived itoat `Lnipnm orherwlse anrrtnva, thr trr,,, ^„r.•u„u •' wm„ e~~nrrnlrnrr, hrrrhmfrrr hr rml!Ilprel plants other.lhandobacco; for cxamplee derivcd from citrus fnr lu,tcrchuaRUnhty wlqit phr u•r,n •y,rr.u,xuoannrrx " 2,708,175, describes aa binder for rcconstituledtobacco which consists nCa plhnt gum• principatlY:nf'g:ilactom:m- nan. United States Patent 2;592;554 to.Ftankenburg, de- scribes,, as~~ binders for reconstituledd tobacco~M various water-soluble pofysaccharidcs such as nl^inic:and prctinic 70
Page 191: fiw68c00
i L 3,411,515 5' 6 di-iodb.l-tyrosine. Amino~acidslhatareeffective asche-may comprisee a combination of the mechanisms of the lating solubJiong agentss iurclude beta alanine N,N-di-first.embodiment of this invention and the meehanism.of acetic acrd amino barbituric acid N N dtacetrc acid; 2- the second embodiment off thisinvention: Imthc first step amino-benmore acid, NNdracetic actil 6eta-ammoethyl« of the third embodiment of'this invention,, the treating phosphontcactd, N N dtacetic. actd .. beta.ammoethylsul4 5 agent Z-_R isan acid which attacks the cal'cium~ and/or finiec acid„ I!I,N-diaeeuc acid and cthylbnediammrtetra- magnesinm, cross-lihks of the tobaccoprotopcctin and aceticacid..ThepH.of~.thisreactionshould;.prefenbly,be formsthesolublecalciumand/ormagnesiumsalts,.whichbetween about 4 and about 10 and the temperature shouldi; are then washedaway from contactt with thee pectins.. preferablyy be between about OPC. and about 145° C. for. In the first step of each ofl the first two embodfimentsa period of from: about fU minute too about24 honrs: 10 of the invention, the pectin whichh results is iaconditionAeross-lihk.destroyiagreagent may also~funetion par- for release from thee tobacco cell structure, R' in Equa- tiallyy as a precipitating reagent,, im accordance with, thee liom P being a monovalent inorganic cation such. as so•first embodiment of this invention, and partially.asa.se-dium.In the first step of the.third embodiment, the in-questering agent; in. accordaneee with the.second embodi- soluble pectic acid resulting from theacid.treatmenCmusf, mentof this invention. Such a reagent, for example, is~~ ~15 tie reacted withan.alkaline material before it is in con-diammonium monohydrogen orthophosphate (DAP), dition for release from the tobacco. cel11 structure.. wbichh is a particularly preferre& material,, in accordance The acid'& treated peetinsares placed in condition for re- with the invention. lease by bringing the.mixture resulting from the acid treat- Ina thirdd embodiment„ the. cross-lihkdestroying rea- ment,, and! preferably, after the. water wash described gent isanacid wash which forms.thereleased but insolu• 20 above;,to apH of from about 5:0 to~about 10i5 and, pref- bfe free pectic acid and solublee calciumiand magnesium, erably, from about 6:3.toabout8.5, by the addition of am salts..Generally the acid wash will comprise an,inorganic alkaline material. Suitable alkaline.materials include.arn- acid„ suchash hydrochloric.acid{ phosphoric acidij sulfuric monium hydroxide and alkali metal'hydroxides, for ex- acid or a similar acidj which will form soluble calciumiand ample,, sodium hydroxide, potassium hydroxideand' lith- magnesiumm salts under the following,conditions. Hydro- 26 ium hydroxide,, and' alkali metal salts,, such as sodiumchloric: acid.and sulfuric acid are particularly preferred: bfcarbonate,, sodium carbonate,, sodium phosphate, and'. The acid may be.employed'as 0L25 Nto5.0N.solutions„ .similacsalts.to.convert the pectic acid to.a soluble form: tlutis.preferablyemployedas.0.5Nto1'..0N'solutions:TheThealkalinematerialmay.beangwater-solublecompo undexact. dilution and amount to be employed will.varywithl containing monovalent inorganic eationn and capable of the particular acid which iss used, it'anlybeing,necessary30 producing hydroxidee ions's when: dissolvedind water: The that sufficient acid be present to.convert the calcium.and temperature of this step may lie from about -1°C. to magnesiumPresernt inrtbe tobacco.bcing treated tothe.cal- about 45° C., but is, preferabl.y,.from about 15 5. to about cium and magnesium.salts.of theacid..The acid.treatment 35' C. The alkaline.material is preferably in the form of is preferably conducted afa, temperature of from about solid particles orin the form of:a solution.having a con, -t°C.. to, about 50~°C. The acid tteatment comprises 35 eentratioo.offromabout5'toabout50%n rxactingthe tobacco parts with the acid untill the resulting Once thee tobacco pectinshaves been liberated from the mixturehas;a PHoffrom.about 1.0 to about 2.5:. Prefer- tobacco, by the removal of the calcium and magnesium ably, the pH is broug}it to from.about LO tu.about9.7;,the enoss-llnks;.theyshould bereleased from the interstices off most desirable pH tleing.g between fi.1'S and 1.55. Thisthe tobacco. That is, they will be made available to the treatment will generally be condbcted fronvabout'.10:arin- k0 solutionn or suspepsion or,in certaini instances,, they wilfl vtes to24hours, depending in part. on the size off thee bemerely depositedon the surface of the tobacco, par- tobaceoparticles;Theacid.eonditions.whicharenecessary ticles..Thiscomprisesthesecondstep.ofttieprocess.ofthe. for thisembodiment of the ihventionn maglie achieved by presenr invention.,In.embodiments I and 2~ ofl the inven-the use of'ion exchange resins which maybe used, withh tion, this releaseor second step may be accomplishedd suitablee recyle, to.o obtain the: desircd. pHH of: the solution 45 concurrently with the first step by reacting,with~ the solu- d'uring..treatmenti The:ion exchangeresins may be.used tion of the treating reagent. In.embodiment 3,.however,, andregeneratediim,accordancewiththe.usual.practicesfor as indicated above, the insoluble pcetic acid resulting such resins. from the treatment should be reacted with ann alkaline. Preferably„ thee mixtureresulting fromthe acid treat- material before it cam.bc relcased. In.such event, tlie: re, ment is thenn washed with waten This.water.wash stepis 50 lease may tie:concurrent with the.addition:of the alkaline preferably conducted aCa temperature:of from about 15' materiall due toa.washingaction: In anycase;.additional~ to about 35°' C:, and„ preferabl¢;, disGlledd water is em- treating liquid or waterr may be used to effect the releasee ployed. When thiswash, step.is employed, sufficient water through.a washing action of'the.treated tobacco particles: should be used too remove thecalcium and magnesium In accordance.withe thee third'step of our process,.the, salts off the acids,. which salts are formed in the above- 55 liberated and separatedd tobaecoo pectins can next be pre- described treatment; thus, there.should be at least 2lvol- cipitated or deposited in a relat'evcly free form (as com- urnes of water pervolume of the mixture resulting from pared'withd the tobacco pcctinsas they weree originallythe.acid4reatment.,The, w•ashwateris,separated'.fromthe presenfin the tobacco), from thetrcating,solution,for tobaccoo byany suitable means, for example,, byconduct- example, by being formedd ihtothe insoluble pectic acid' ing.thewashina:oenhafuge;filterpress;Ruchncrfunnel, c0 or.imo.aninsolublesalt.ofpecticacidorbytheactionof' oranyother apparatus.fromw•hichliquids can besubstan- a.water-miscihle solvent, such as acetone or ethyl: alcohol tiallyrentoved: from solid materiats: 1ocause a water-soluble salt of pectic.acid to go out of (D In summary, in. Ihe finrt step of the first. embodiment solution. In the case ofl tobaccoo pectin solutions such as. (Z) ofthisf invention the treating:a^ent.Z=R attacksthe cal- solutions of sodium and potassium peetinates and/or pec- ~ oium andYor magnesiant.cross-lihks of tobaew protopec- O:i tates, this can be accomplished by acidifying thee solution ~j until thepectinsprecipititeor byadding a.gelation agent, ~ tinand formaprecipitates which is a salt off calcium such as an alhotiolic solution, preferably having a pHof CA and/ofr nragnesium„ thus removing the calcium and/or from about I to9 and., preferably,, from; about I t'o5..[A magnesiun, from the protopeetia and from.thesolution. The vHbf the alcoholic solutioncan be regulated bythej Inthe first step ofilthe second embodiment, . thee treating ;q:o addition ef'amineral acid;,such as liCl, to the alcohol. agent 2-=R is a scdncstering.acentg which formsachelate Although the prefcnved gclation, agent isethanol,.s anyofthe magnesiumm and/or calciurw from thrtobacco pro- water-ntisciblo or;qanic.solvent having up to about 10 car- topectin an&makess the: calcium: and/ou magncsium. an- bon atorns may beemploycd, forexantple, a~ketone,.such available for recombinihS with the pectins. With, certniit as.acetone, or adicther, such ac,dioxane..Water-immis- reagents,. such as DAP,.the first step of the present.process 7.,, cible solvents sucfih as ether,for, example, ethyl ether; can
Page 192: fiw68c00
3 pp: 97 r, 1Willi•.. 272 p ural Sc4h, llk• T +;y st Cemun I Vassilu, Ai 2z:',r cience. Mr;, meS inesp,, Its oC.ry,y f . . ~ pole of >inzyme: rndYtctiaa unmari sn f.. Sheld,-. ork, l9t., res. Hil.n" flon, DR ntendcdl, deral rr,,~ nalics)~ 1/• to, and in It N. Ptn r4mbryonic'. Development AfLnrac/:. Measurement oftryptophan tryptophan pyrrolase activity rises to adult levels 24 hours after birthh in the guinea pig andrabbit and 15 days after birthinthe rat. Injections of:tryptophan did not't increase'tryptophon pyrrolase activity in. fetal liver, and the response to injection in all species developed simultaneously with the'e rapid increase of enzyme activity to adultt levels. In view of theconflicting: results be- tween the mammalian and the amphib- ian dataa we decided too repeat thee work of St'earnsand Kostellbw using, Fried- bergg and'. Eakin's method (S')) of cutting em6ryosintos halves and quartersto permit penetration of' substrate.. Ac- cordingly, the jelly and vitellinc mem- brane. were removed from Rana pipiens eggs by tlie.papain-thioglycolate method of Spiegel (6):.. Intact embryos, halves, and quarters were: incubated for 12 hours in' either' Holtfreter'ssolution or 0.02Rd.L-tryptophan in Holt(ceter"s solution. Cbtt embryos remained alive, ass indicated by'normaU closuree of the eut surface in both control and trypto- phan media. After fivee washingss with Hbltfreter'ssolution,s tryptophan pyrroa lase activity was measured in 12.5-per- cent homogenates by the method of Knox and,Auerbach (7):.,The results of sevenn experimentss with 4200 embryos per experiment indicated no constitu- tive enzyme present in either the blastula, late gastrula, or early neurula.a stages. Of importance is theresul.t'e tha0t incubation in r:-tryptophan failed to in-duce'.enzyme activity in these.stages. Stage 25, (8), embryos'weres cultured in either 10-percent HoItfreter's solu- tion or 0.03M L-tryptophan (in 10-peo- cent Holtfreter's's solution): forr either 6' or 24 hours.. Measurement of tryptophan pyrrolase activity again revcaledd noo constitutive enzyme„ and noo indication of activity' wasnoted after tryptophan treatment.. Enzymemeasurements'e were a1soo madee on ripe ovaries of adults, and no consti~tlutive enzyme wass detected: At, tompts. werc' madee to induce enzymee formation by injecting maturae females' with 1.5mg5 of L-tryptophan in 3:0ml0 of 0.65-percent sodium chl'ori$c and by assaying.g ovarian homogenatcs. 3, 6, and 9hoursafterinjection., No enzyme activity wass detected. During thisperiodjs however, a 420-percent increase: r,ludase activity in embryosof Rana• .. ;,rtrla did not. reveal significant amounts J constilutive'e enzyme:. All attempts, to .eoce enzyme formation inn embryos by ..,unre in tryptophan solutionn or in ovaa .•n,el:gs by injection.. of tryptophan into e mamrefemale weree negative... In 1958 St'earns and Kostellow (1)~ •,ryxted on tryptophan pyrrolase activ- .ts im dissociated.d embryonic cells of Rene pipiens. Enzyme activity was nott rAd. Lyn- ~ k/oclcd in t8ee intact embryo beforee rew. Ymi h,mhing. In embryos dissociated into, Found+ paraliom indqui•: ot8ce n' t'er Iren shingmr ,cll cultures at a stage prior togastrul!a- :am and incu'batedd in. L-tryptophan, cnrynre activity could' be'e detected,, rc.aching a maximum level between. 88 eud IiOhours ofl incubation.. Of stniking. :mportt was the: observation that, before . +Ae onset of.gastrulation,f populations of prr.umptive endodcrmm cells demon- nr.dod enzyme.activity after tryptophan nh•utiation.After gastrulation', was com- p&IC,. enzyme activity could be'e induced unly inrt, those cultures eontainingg pre- tmnptive gut cells. From this's work it may be eoncluded diat't tryptophanPRrrolase activity can be inducedd in. eph Il ~.rAs lacking constitutive'e enzyme. These wYort Inults have been frequently cited in Paprn Readini hool r' he Sunt 195, n. 55 u 94 rc JralKt.. a.Ro IIIm rliPpott ofthef hypothesis~ that enzyme iuduction plays'an important rol'ein anhryonicc development. In contrast to this observation is' the: tcpurt by Nemeth and Nachmias'(2): +nd that by'Auerbach an& Waisman (3)' ttiat lryptophan, pyrrolasee is present in. +Ihdt mammalian liver buris either +htent'd or a6 very low levels in fetal. Iner. Nenteth (4) demonstrated that ln,fn,rtlnnr for prepnrrng,rePOm. Begin the re- P't ullb an abstract'.of from 45:to 55',words. The. •'"ret sliuul& nof'repezt phrases employed' in °a lulrs It stlould work with tlletitle.to givelhe'. •'wfir a snmmaey uf.the.results presentedlinthe. Mnper. IvPn manuxcrlpts double-spaced and submiG one •.SNmitcopy and one.carbon copy. Ihe eport pro{,er en the equivalenr of .worda. Ybls'space Inrludes.that occupied by. '^'IS°Iluc'.matwial as,well as by We referenres•v nons. I'.ndl illustrative material to one 2arolumm f~g- ''"en •tui Is, angurea whoscwidth equalstwoenl; Ie St) or tu nne 2a~oliumn table ur tofwoo bmn alusrrations„ which may consist or' two 4urq or tnvov ' labknne o[ f earh s or o.. ror fnrthcr, detallrsec "Snggastiom taCorttrib- r"rt f, 18t I ' lSC/enre125J, 86 (p957)]. _ tttANtJARY' 1961 was noted in, liver tryptophann pyrrolase activity' (40:5 -!-A.90vcrsus. a basal activityof 9.64L 1.26) (9). These re- sults are inn agreement with the resultss of Nemeth (4) on.fetal and adult mam- malls. Tryptophan pyrrolase activity isabsent.during early stagesof' develop-`mcnt and cannot beinduced'.ihe the `absenceof'significant amountss of con- stitutive enzyme., . , . - Thee methods employedby' Stearns. ~ and'. Kostellow may have; increased the permeability of' embryonic cells too the substrate, whichh may accoun0't for our . failureto confirm their observations. Adetailed report of their methods would permit the testing of' this' hypothesis. The'work reported here,however,.doesnot', support.the hypothesis thatt substratee inductionof.enzymes.playsan importanti role in development (7D).. , MELVIN SPIiBGEL DAVm'. L. FRANKEL . Department of Zoology, Dartn)our7i . College, Hanover„ New HampsJiire.. . ttefereuces and' Notas , 1. R.. L. Sleams andl A, B. Kostdlow. in A SN puri m,r an the Chnnrrn! Borrr ol. Derelbp-. . mer t. W. D. McElroy and B. Glass,. 8ds. (Johns Hopkins Press, Baltimore, 1958h. . 2. A.. N. Nemeth and V. T. Nachmias; Scieece128, 1085 (1958). 3. V. H. Auerbach and H. A. Waismam.. J. Blo7. CAem. 234, 304 (t959).. 4. A, M.. Nemeth, Ibid. 234, 2921 (1959). 5. F:.FriedbcrKand R; M..Eakin,l. Erptl.Ioo1.' 110, 33 (1949). 6. M. Spiegel, Abnr. Rerun!' 111,. 544I (1951.)I. ,, 7. W.. E.. Knoxx and. V. H. Auerbach, J. BrnL ' Chem. 214, 307 (1955). 8. W. Shumway„ Anar: Rsarord'7A, I34 (1940). 9. Activity 1sexpressed in micromolesof k'ynurenine per gram (aryy weieht)') per hour, plus orr minussthndard error' of the mean. m.,7his work was supported in part by td:5. Publir Health Servicee research grant No. E-3030. 23 September 1960 ~, ~ N ~ Differential Thermogrants ~ of Potysaccharidhs (p Rbstract: Carrageenans:and.various other . polysaacharidess were characterizedd by dif- ferential thermal analysis in an atmosphere of air- The carrageenans„ although isolated Bromm different sources, had essentially the samctherunographic characteristics. Of the orher compoundssutdied', such~ closely re- lated polysaccharidas asamyloses and amylopectiir showed widcly ditferent ther- mal behavior. Thermographic replication was highlysatisfactory. _ The characterization of clay mineral's by dilTerential' thermal analysis, iss a technique widely used im the: past (1). Very little work, however, has.bcen con- . cerned.with the.use.of this technique in [bc characterization of. organic com- pound's• Asurvey of the' possibili~ty of using:g differential thermal an:llysis to characterize'e simple organic compounds -that is, organic acids and their dcriv- atives-hasbeemreported'. (2;3)i, In an' 27S'
Page 193: fiw68c00
3,411,515 17 6nes were then admixed with 11 N'N hydrochlbric acid until the.miature had.a.pHiof 1.35. The pH was checked ont a Beckman pH machine and the curves were also plotted against atttration ofdistilledf water:. Aftertitration/.thc'acid was washed off the fines with three 400 mi.l portions.of distilled water. The firtes were redisbureed'iu 400 mt. of distilled water and sodium bicarbonate wasaddcdl to bring the pH to~ 7. The slurry 18 3. Percent Elbngation=The percentage elongation, aat breakage, on anlInstron Test Machine. 4. Tensile,..kg./in.=The breaking,strength ofa 10.cm.0 test strip which is 1 inch wide;.an average of: 110 strips.. 5. TensileCaeilicicnt=Kg. per gm~. of'basis weight., 6. WorkCoefficient;.gm..em:/sq. in.=Work.coetficienc, is proportional to. the product of' the tensile strengthh andd the elongation. was cast att aa lhickness:of 3ff-50 . milsk and'dried to form Example . 31 a sheet and: the resulting sheet was used as the adhesive ltl •I7tee following ingredients were mixed iato900! parts, binder. in sandwlchtype reconstituted tobacco sheet. of' hot. water and heated for 3 hours at 85°=90° C.,, Example 27' Twenty grams of tobacco fines were washed in 1 liter ofdistilled, waterr to get rid' of t'hee tobaccosotubles.The r+~ fines werethene admixed ivith I N hydrochloric acid until the miatureihade a pH of 1.35. The pH.was checked om a Beckman pH machine, and:d the curves were also plotted against aa titration of distilled water. After titralion,, theacidl was avnshedl offff the finess with `-'0 a 400 mf. portion.ofdistilled water. The fines were re- maintaining a pH of 7.0tiy adding small amounts of'f aqueousammonia. PSrts: 87.9mixed manufacturing byprodbcts andscrapd to-bacco 5.0, . diammonium ortho phosphate (DAP) 5.0l . glyccrih . 2.0.corn syrup0.14I potassium, sorbate disbunsed in 4000 ml., of distilled water and sodiurl bi- The slurry wass then refined in a one gallon capacityr carbonate was addedl to bring the pH to7'. The shlrry WaringBlendor. for 5'mimutes. Withthis: amount of re- thickened to' a viscous mass;, which is evideneethat the fining:, thee fibrous portionn of the composition was s-en pectin bad beenn solubilized'. The slurry was cast att a 25 tobewcllo dispersed and.d thorouglilyinterlocked when- thickness of I 30-50 mi'ls and dried toformao sheett andd examined inn a droplet at a. 1:9 dilution. This examination tAee resu1tingg sheett was used ass thee adhesCvee binder in was facilitated by the' addition ofa, small amount. off sandwich type reconstituted tobacco sheet. Congo red dye. The.composition was cast.omstainless steel panels.withExamples 28-30~ 30 an eight inch angle knifee set fbr wet filmthicknesces of In each of these throe examples, 201 gms: of tobacooa020. to 0.1345 inch, and diied on a steamltable: fines were washed in. 1 literr off distilled water to get nid The: wett strength of the films was determihedd on aofthe'tobaccosolubles:.The.fineswerethenadmixedlwith. Scott.Serigraph7lP-2'using.llinchwidthstrdps.Tlhecenter. 1~ N hydrochloric acidd untill the mixture. Aad'ad pHI of 35 of. eacfth strip was wet~ with distilledd water.r on both sides. 1.35. The pHwasH checkedl on, a. Beckman pH machine. and allowed to become thoroughly wet throngh(30. see: and the curves were also plottedi against the titration.ofn onds or one minute) before actuating the tensile mecha. . distilled water. nism.. Thcsew fihns showed the'e extraordinarily high.h well Afterr titration, the acid was wasAed' off. thefineswith. film strength.of'140 gralnsat a.filmweight of 9'.5 grams three 100 ml.. portions of distilled water.,The fines'were' 40 per sqparee foot:. A high wet strengthl is highly desirable redisbursed in 400'.ml0 of distilled water andd a neutraliza- • mthe preparation of ci;areile filler, and..assuresd that the. tion agent, as indicated im Table' V, was addedl to bring, subsequent manufaemring, performance of thiss materiall the pH to.the valuesliown in Table V:,The slurry in willexeeed'that.of the.finesogradesofleaftobacco:.Suche each case thickened to a viscouss mass which i'sevidences strength is uniquely obtainable in the presence ofthef that thepectiv had been solnbiliied. Theslurrywas cast 45 liberated form of pectin described in, thisdisclosure:s at a thickness of~ 30-50 mils and dried to form sheets. We claime. The bihders8ormed in this way were tested to determine 1. Aprocessfor producing reconstitutedl tobacco.sheeto their physical'properties. These properties are shown in material which comprises uonlacting,comminuted toiinceo: TlableV below. The binderr was used asthe: adhesivee plhntt parts withh a treatingsolbtionl containing a reagent iita sandwich type.reconstitutedltobacco sheet. 50 selected from the group consisting of sodiuml and potas-sium orthophosphate'in a concentration of 5 tl . andat' a temperaturee of B0° to 100° C: so ass to d'eatroy the TAnLSV.-PAUPSRTresornwnEn.FtvatUwnERYACm'alkaline earth metal cross-links which hold the pecrina- W'A61[. PIiOCES3 E:amntr....... .------------------------------- _.- zs ss ao ------------------------------- zt r:2 L.1 ncenet:,.r~n./rt.........................__._.__. e.a. 4.78 4:rs Neetrnlbatiainennt....____.._.____._..__.__..__ () (-) P) Lme¢m[nrCOnnt________________-..-.-.-__.__ eN. ors otc the peclins's serving ass a binder forr the treatedd lobacco Pcrccetnloistnrc.------------------------------- ._ 1'ercentEImiSnl!om---------------------------- 115 116 s tz.io _m .1a Tis.ilr, qg./iiu--------------------------------- _. 2'91 2r3 250 Tons!le'.CueniMxrtt, k£./ln. C.he,1[L............. . n'S6 . 453 a.Si worl-Coc!Iiciont,Pm.mn.Isb!n ................. 1'.at 5.a0 1'.a_ eeousmaterial and thus occasioningrelcase otf the pcatins 55 byy formation of' a precip,itatce conlprisingang insoluble calciumormagncsiumlsal[and'finallycastingthetobaccom and "insitu" form<dlpectins to form a reconstituted shcet, parts.in[he'finalsheet.. •. 00 References Citedd 1,634,879 ' UNITLD STATBS PATENTS 7/1927Nanji et al. Q. 3,012,915 12L1961. Howard __ ___ _-_ t3t1-17 Q 3,120',233 2/ 1964 Hattista et al ___ 113I1 143 X. ~ 3,1211,433 2/1964 1'lunkett et •ll. ------ 131-140N0 Ioonc:Nn:oll. w5% tcott. ras°<.Naott. In the table the terms have the following meaninpsc 0_ 1. Iutegrator Count is proportionall too the area under: the sttess-strain curve recorded by an InstromTest. Ma- ddnc _ 2. Percent.MOislnre="Iilte: percentage of moisture eort- MELVIN D: REIN„ 1'limary Examiner. ( ftInioed.in the entire sheet (wet basis)~., SAM.UEL.ItOREN„AsrBUmt Gxnmua•r... Q) Gt
Page 194: fiw68c00
3,411,615 1!I Ezample 3! . One hundred grams of burleytobacco stemswereeovered withh distilled water, leached for.30minutes and then drained. The washed stemss weree themn mixedd with a solution containing 1.0' grams of diammoniunm mono- 5 hydiogen. orthophosphatel in 600'.0 ml. off water. The re- sultant slurry washeated'for. I hourr att aa temperature: of'.feom, 90 to 100°C. ThepH of the:reaetion mixture,. 12 Example 11 One hundred gramss of burlky tobacco stems were eoveredd with distilled wateq leached for 30'0 minutes and drainedl A solution of 10 grams ofVenccne (tetrasodium saltt of ethylenediamine-tetraacetic acid) in 600ml., of water was added too thestemsanl the mixture was made basic with aqueousaodium hydroxide. The resulting miz- turm was then.n heated for 1: . hour at roomm temperature. aftereompletion of the reaction, was about 7. The en. Theentiremizture.(apulp) washomogenizedinaWaring tire reaction mixture was homogenized in a Waring.. M blendorand the solidscontent was determihed to, be 5% Blendor: The solidk, content was determined too be 5%byweight. A 200 gramn portion of the pulp, thns prepared, by weight. wascombinetls with 2 grams of glycerinasn a humectant, Two grams.of glycerin; toserve:as a.humectant, were and then cast intoa filmof'50 mils thickness by bheuse blended'd wittv 2000 gramsof'. the abovee reaction mixture.. of' a Gardiner casling., knife. The resultant sheet was A filtn oP. 50mi10 wet-thiskness was cast from thiss mix- 1a.found too have satisfactory.physieaI properties and, upon ture.. The. extruded filtm wasfoundi tohavethe property burning,, exhibited a very pleasingaromag off being ablse to slide off a surface evenn when: . newly Earample 12 oast. Afterr the film wass partially dried', itt was found that it could' be peeled, off a plate.by hand, while still partially Greenbrigflt tobaccoleaves,were soaked ih, isopropanol wet. and then hungg up. to dtylikey wQtt cloth. This prop- 20to0 remove sugarsands chlorophyll.. The midrib was erty provides definite advantages in ttie: manufacture of stripped out of the.leaves leaving the web. One thousand tobacco products. grams ofithee web (:82 g0amson a solidk.bnsis)weraplaced Physical tests were caraied.oucon the.dtied film thus ina porcelain~ bucket and covered with boilingdislilled preparedandwered also carried out onn a control film water containing 9.3 gramsof diammoniurvmonohydro- made by lnsingg conventionally pulped tobaceoo plant.parts 25 genn orthophosphate (DAP)..The. DAP' was added on..the with sodiumm carboxymethyl. cellulbse(CMCy. as the basf's of.30 grams of DAP per100.grams ofstems (which binder. A filmm of'binder ass made in: this example was contained. 12%u moisture, by weight).. The resulting mix- burned and was found to give a pleasant,aromatic.amoket turee wass boiled at. lowheat for one hour. The juice was The tesn data. was givemin Table III... thenn firstt expressedd fromm thee mixture byhand. Solids, for TABLE, . cII 3Qexample cellulosee andl sand„ were then further separated TPSLBinder- Contro4 Filis Binder-ptlm from the juicee by'centrifuging. The clear juice from both operations was then mixed with.70% ethanol to form a BinderI ------------------ .----------- -Touvccopecthr C59C}YUIp: gel,: which was then squeezed outt in cheese cloth. The gel tom.erUla sieu, gel was transferred to. a Bfichnerr funnel wheree it was BestsWetghqgms.(n?...._._..------- - Iss-------- _-._. a.s. - 355 washe& first with acetaneandi then withh ethyl: ether. Muisture, pcrttot.-_..__ ____________.. 14.3. _ __-______. Ir.O. TensuoCOCmcicntr_.._-._---------- 0.1a------------- O.ss. Finally, the gel was placed! in acacuum desiccamrand msaron Tensue; pse!...............-- sn------- ..------ .. aa. dried. The Eet was suitable for use in the preparation.of a Elongotion„percenL._.--_-.-_-.....- 13iI..---------- 4.1.. Work Coeluemut,8n,• em.lsq..in.l31.q:_.-_-__ -- 51A, reconstituted tobacco inaccord2nCe withlhe ICachiftga 1Basesonootntsnwuon. 40 of:the present invention.. r 1Sg. per gm. of basis welgfit. rxe./tuJ toraaun<n.te,ostnp: ^ ;_Example 13 4work eoetficfenC is proportrunal to the product of tLe.tenstlc strength .nd'.the elongation. Burley tobaccoo stalks. weree separated intocortical tis- Examples,4-10 sue, woody tissues,., and pith: A sampleof each was steam Iheach of tbese.examples,e burley tobacco.stentso were cookedwithd 10% sodium carbonate for 30 miuutess at covered with distilled water,Jeached for 30~minutes, and 43'atmospheric pressure and for 20 mihutes at 20p.s.ii.g0 drained..One hundred grams of stems.were.tteated with After this cooking, the woody t[ssues.was still hardland the agent indicaled in Tab1eIM. The agent was dissolved could not be pulped in a WaringBlandor. The cortical in. 6000 ml. of distilled water im an amount sufficient tissue and pith were soft and pulpable. Each of these tomake upp a~ 10% (by weight)solution., The leached latter two preparations were suitable for use.in thee prepa- tobaccostemswereo placed. ihn said. solution, and heated 50 ration of reconstituted tobacco. in. a steam bath for I: hour at aa temperature of from 90 to 100° C. (Except for tfie.examplee in which Versene Example 14 was employed. That example.wasconduetediatroom tem- Coarse. Broundl bright stern tobacco, fines (30 grams) peramte.) Afive.mlA aliquot'was.tnken from the resulb . were washed thoroughllyincold water;, and then.placed ing.mixture and mixed with 20 mis, of cthyl.alcohol in sgin a boiling aqueous solutionn of 3 grams of.diammonium a graduated' cylinder whereby a precipitate of'f tobacco monohydtogen orthopliosphate and coked for 55 minutes. pectins was obtained. The amountt off prectpftate in the graduated cylinder,uresobserved. Each, of these preci~pi: The mix~ture.lvasthemplaced'in a Waribg lllendor. After lates ofltobacco pectins.was suitable for nsein theprepa' a very short. Period~~ inn the btcndor, the mixture was con- ration off aa reconstituted tobaceosheet inn accordance 00l verted taa viscous, line, impalpable slurry;; wherein the withh thee methods taught byy the present invention. The tobaccostem particles.had becn complctcly separated to obtained in these experimentss aree presented in units of'~ cellular size. This irnpalpablee mass was suitable results , for use as a binder in. reconstituted tobacco. When re- Tablc 1N below: TABLrsrvmixed with somee of the cold watcrr washings removed Volume.oEcoagulated On5 in the first step, the impalpable mass iinmedi:ucliybecame © Reagent:: lobaccopectins viscous.:md eventvally jclled to a soft mass. Q Pentasodlum triipolyphnsphate.--------------- .15 For further comparison, a similar sample ofcoarseJ Sodium hcxametaphosphatc ----------------- 5 gronndd stcmd fincs (30 grams), was dispar.sed im boiling N Diammonium: monohydFogen.orthophosphatewater and cooked.fbr abouL30 minuteswith three gramsQ (DAP') -------------- ---- ----1i5 70 oh diammoniurn monohydrogpn orthophosphate. The pl-I(fY Trisodiumm orthophosphate - -_ _--_- 15 off lhis. mixture was bmu26u, to a value o0 7.1 by the M Disodium monoh}Jrogem orthophosphate --__. 15 additiom to the mistum of 30% aqueous ammonia., The Q Dihydrogen monosodium, orthophosphale ---__. 5 granules of tobacco could then be refined to a2 palpable Vcrsene (tetrusodium salt of etltylcnudianrihe-pulp, similar to the soft mass prodhced in the experi- tetraacelic.acid)------------------------- 15 7i : mcnt described in the first part oGthis cxamplc..
Page 195: fiw68c00
G j, --~+.attt~ y-- rhw. 12327 Chemica6:Abstracds 12328: Wo1• G5, ~r I ~ 1'.Iii6 Vol. 65, (a) soakk for 10 min. at 40" in.2 g:/1. OS-20 and AcOH to pH 3- be.removed by'HiOI and the whites will not be slncarcd bp.li. 3.51 (b).addtbe soln. of dye,.suitably a tntxt'.. ofProcin5'ls Redl most severe Gauud'cring trcatntcnts. 'phe dyeuqs nre fa"t GS, Or:mge„and Blue and dye for 10 mut at:40"; (c).eontinun) washing, sweat, light, and gas in most eases. The Icm,l iv n t - todyewlnlcrarsingthetemp..frunt40°to.thebniliu>40min..; (d). affectcdbythedyeing,thedcsign.is.sharp,andthcxtrengOrir.n„t C dyeatt7kboilfor30min. (e)addinNa2COswln.toadlusttppH adverselyaffected.. TmmtsA.l[ilsni ~ 10; (f)dycattheboilfor.00min.; and(g):washat:60°foo20:mrn..m. e testingi oE'sizings [for textiles]'I. Karoly Rtm~tsr,.,~,r1 in a solm, of I g•/l. OP-10 and Na.a. Dyeingsthus made are(FOrschungsinst. Testilind., Bly(lhpcst„ Hung:). Sbtqrter claitnedto be free of ihequalrtiesof'shade and of a striped:ap- '.Texlilueredf. 84(4), 39:rN]1(1966)(Ger).. The testing of sirihql ' j pearance.. Robert IV.'Moncrieff iss discussed fkom.. ~}'s points of' view: analyses ofsrzings, eiiinq ~. - IDyeing.of acrylic fibers byy the constant temperaturee method. i baths, siztng films, and sizedi yams. The follmvtng ropic•; ,n,, 1 G. Ilerbulot (Franeolor Appf. Latis., Paris), J. Soc. Dyers discussed: dbtection off algae-type sizmgs„ Ht0-sol. AIc cclhr. rCoiaurists. 82(6), 217-22(1966)(Eng). Level' dyeing of acrylic lose deeivs., cellulose glycolates, protein.typcs, oily tyf>L< r fibers wasaccomplished.at a const.. temp. The temp. through- I acrylic types;, poly(vinyl alcs.), pectins, and glycerol, d,111, I~,I j out:the.fiher ntasshnd to be kept uniform, and addn. of HOAc dry' sizing material by gravimstric methods tcfrnetumetrk I ~, was neccssaryf'or a, fiber-ltquor ratio of.1:10-1:50.. To provide methods, viscosity,, and adhesivity;: testingsizinl, fdms forpe,,r adequatodyepenetration andlfastness, fibers~ were.dyed for 1 hr. strength; detn. of'tear strength of'sized yarns, their 1lehavior in ' at 85:° with 0.5% dye soln. contg.$8% HOAc; over 15'5 min. the. , scouringor laundering„ theiiH20' content, and. their di•gree.,,/ ~'. temp. was raised to, 90° andd held there 15 min„ and then raised . penetration. Thomas~ A, l6'il.m to 95° over 15min:5 and.held.15 min.. Work:trials on.thn.tow Polyethylene intextile finisbing. Werner Scliarroba, yamm andl cloth cmtfirmed the value and time' saving of this ner IVeber Ttxlilveredl. 84(4), 408-10(1966)(Ger). The prup.r. • method as compared withtheolder; progressive-temp:aisee ties of high- and normal-pressure polyethylene are.contr:uti$in ~' method. . C. E. Beland the bulk, and the.properties of filaments.of normal polyethyl,.;,r ~'. CouplingconditionsandvelbcitiesduringtllenaphtholASdye--are.linkedwithitsuse,firstintheU.S.asa,sizin g:material,.pr,,g i' ipg of cellulose fibers.. Werner Kirst (Farbaverke. HoecHstt viding aa transparent protective layer of' highlaundering rc.i.t. A.-G„ Fiankfurt/M., Ger.)- MelRiand Textilber. 47(5), 543r6 ance, and resistance to, Cl bleaching, Dispersions am prepl. i (1966)(Ger). Thee classification of thre naplithols and of the esp.. for textile use; usually with~ nonibnir dispersing ag,nt,, ( bases by several authors~ differs due topcrsonal conceptss of which are converted to oiltin-IIZOtype emulsions beforee uv. ~the coupling: energy andl of. the coupling rate. An attempt.iso These emulsions are mainly used assoftening and'glazing agnnc made too det.. thee coupling rate by evaluation of' the depth. of for.r natural fibers;, synthetic fibers,, orr mixed fabrics toinquut t shade obtained by coupling for 1 min. with a 0.O1N diazoniutn permanent sof'tness„ fullness, or glaze. Tite methods of npplii.r. ) salt soln'. The values thus obtainedlcanbeusedlto prep. mixts. tion tnvolvee no crut. steps.. The effects produced on the or.,r ~ of the diaeo camponents. Iathe coupling of 3-hydroxy.2-naph- strength.and resistance to scouring,of cotton andlviscose; nnd'..,m thoic acid with arylamides, tFie majority of thefast salts from.comm crease recoveryand its permanence to washing, arre tabul:.4d.. aminoazobaseswerefoundto:have.simrlhrcouplingrates. This.- Thomas A. Wilson I' fact haslong been known to dyers and mixts. of these baseshaveCross-littking of wool with nitrophenyl esterss of dicarboxyli {c been used, The method' cannot't be used for yellow and slow- acids. I{L K.. Rouette (Deut. Wollforschungsinst., Aachcu, (couplingnaphthols.. Hetbert'~.C.Scyfertit Ger.). Melliand Textifber. 47(8), 903-'i(1966)(Ger). Wool is 'I Lanestren dyes:: a special assortment forr dyeing and' printingg stsbilizedl bycrossdinking of the camino groups of the pepr.ulo of polyester/wool mixtures. ErnstSchoenpffug (Badischen Ani- bound lryyinegroups in a-keratose aloneby reaction with p-nitrv, lin- & Soda-Fabril< A: G:, Ludwigshafen, Ger.). Chenriefases d'd phenyl esters of dicarboxylic acidsin HCOIK'Me: as ltie solvent. 16(3), 208-12(1966)(Ger):. The history of. the development of The soly. of trypsin.of the a-keratose is.decreased -7{%asno dyeing of polyester-wool fibermistsr is discussed.and the prop-vealed by cross-linking with. rcC-labeled bis(p-nitrophenyl) u•ha• L C ertlres and methods of appLication of the Lanestren dyes developed cate. Thomas A. Wiis ur t by B.A.S.F. for the.dyerng and printing of.suchf mixts: are.de-Chloritebl'eachingbgttieimpregnatioa-steamingprocessinlhe ~scnbed. Dyeing is done at 98:-106:° at pH 5.5-8.5 inn the.pres-_ laboratory j,. L..Haeusermarm and E. Habluetzef (Techuikum, f ence.of an accelerator (Palauilcarrier B or PE, constitntion not. Winterthur, Switz:). .71eRiand Textr(ber.. 47(8)'. 89:r6(llvl6) given). Fastness properties are improvedd by after-treatment. (Ger). The degree ofwhiteness.improvedlin a linear maumr ~' with proprietary agents(\ekanll.AC or Errtulphor EL). After-with increasing steaming time to:a max.,at: a time detd. bytht treatment of bl'.endsdyed with. Lanestren B1hckR is:done withh chlorite conen. Addnl',.,time did not improve:the whitencss, hul ' hydrosulfite added to theafter=6reatment bath..' J. I. M. Jones didimprove the removal of foreign matter. The:consttmptiun nf '' The dyeingof secondary celluloseacetate. B. Campbelll oe bleach was greatest' at the beginning of'the' oper.ation.,, thc antt, ~ (Inst. Technal., Bradford, EngL)'. J. Soa. Dyers Cofourists remairiingg reaching:g its approx. final value long befurethc nr.u. 82(8), 303-13(1966)(Eng). A review off dyeing: thee title: fiber degree of whiteness was obtained, and remaining at this v:due with disperse dyes,, diazotized and developed disperse dyes, even.if the stemning,timewas greatly increased. The potenti.d `. water-soLdyes, asadyes; vat dyes, and solubilized': vat dyes,: of'the NaOCLsoln• increased at arate much4ess than the ratc nf aciI dyes„and aniline black.. Peter Marcr'1Barna the increase of'hleach concn.,, thee relation being nonlinear. iAdvancesLmdyeiugnylonsofvaryingaH"mity:. A-Blue(Sandoz- ' TfiomasA. Wilsun Prods. Ltd. Leeds, Engll):. Tex[iledifr..9E(1098). 245-9(1966)Evaluation.of antibacterials.for.fabrics. J.. Pabner and B..A. ~, (Eug). Methods for eliminating differences in the dyeing rates. Blomfield (WyandotteChemL Corp., J. B. Fordl Div., Wyam ~. of various fibers are listed. With disperse•dye systems, a 1:2 dotte, Mich.). Soap Clrem. Speciol0res 42(4), 56-8 83-•1(Ib1+l) j metal complexdye is used. Withacid and premetallized dl}*es,. (Eng). A methodd for detg. antibactenal agentsrs dcscribrJ. ', anionie agents, such as Lyogen P(Sandoz Products Ltd.) or cat- i Circular swatehesof' 1'/e m-.diamL were treated and inocul:ri''d ionic agents, such as Lyogen WD'or Utrivadine PAW (CIBA) with 0.2' ml. of'a 50r50 soln. of a 24hr. bacterial culturc.. gr'ru'rr n' •I are used. Soll•ent.carriers, such as'PhCHtOH, PhOH, or NHr- A.O.A.C. brothand0.2%2,3,Striphenyl'-2H.tetrazolimo.chhnil~ I'I CSDIHr,.allow, dyeing to take place more readily. The effects'.of dissolved rn A.O.A.C. broth.. The inoculated..swatcheswerc k.p 111/t pH on dyeing with.C.I. Blue 72, a.monobasic dye (I), C.I. Acidd inn an 809-humidity chamberr at 35° for 2 tirs.; after lhis, th' Y , Red. 3, a: dibasic dye (II), and Lanasyn Grey BL., a 1:2 pre-were placed on tryptone glucose ext-. agar in petn dtshcs ''n't d'I metallized dye (SII)„ are described. I gives good exhaustion and.-incubated for 24 hrs. at 35°. The.color:ef the swatchcs.l.as Wb+ 'i +, migration at pH 7. II gives.poor migration.atl pH.7 and also.at otlserved... Slvatches witli insufficient hacteriostaticactEvitywr+` higher and lower pH's.. IHi gCvespoor migrationn at pHl 7, but light', . to dark:pink:in color due to the redn. of'the dyce by rla' t^t ( tltisisimprovedatpH9. R. Johnston~ organism to its HzO-inaol. formazan;swatches that e.d'iliir~d ; Textileprinting.. J. E. Tomlinson. Reo.. Textile Phogr. 15, antibacterial activity remained white. Canoll W.. Collirr ~ 375'-95(IN63)(Pub., 1964')(Eng);. Machinesfor roller pnnting, The application oFdiHerential thermal.analysis tu the.dctectien screen printing, and auxiliary processes,, and automatic screen>T of: polymer finishes on wool. J. S, Crightun, F lf...ppey• ""'I Q prihting: are drscussed.. Developments in colomtion processesJ.. T. Bail (InsL. Technol.,, Bradford, EngL'.). J JN. 11>"' Q have bcen..mainlyconcerned witlr, reactive dlyes. The linkingof' Colourists 82(5), 187-5(1966)(L•ng):- The presence uf' a 11"II' : f colored mols.to cellulose byacovalent bond kasbeen extended mer finish iss iitdicated.by theappcaraece of'a dtstrnetive ""'I" by the use of reactive cross-linking, agents. Polycondensation. therm on the.normal differential thermograplr'of purc,.uulnA"I N' dyesands the use of chromopimrice monomers inn polymerization ool.. The presenceof:only 1% polymer.on.wool.can be (ol''.'t"I reactions represent nermethods of coloration. Synthetic poly-- svoo l.. by this technique. FrcYI.Wd llclmk, ,jl ~ ' f . mcrfilms, protein filiers;, and special effects are:coveredL Kinetics of'the reactions of ethyleneurea derivativeswilh,cut .1 1` Jiohn.W.,Hacfeleton. cellulose. I.. The cellulose-dihydrozyethyleneurea rene~Filin printing.witIr acid wool and metal-complexdyes on ace- tion. Elwood J. Gonzales, Ruthi R. Benerito,. aud R:dplr1tate rayon. R. Argay QCiba A: G., Basel; Swit2.). :lfellrnnd' Bemi (Southern Regional Res. Lab., New Odams l•r.). I''" ~ Trxla7bcr., 47(8) 90o-2(1006)(Ger). Printing:g of acetate rayon h tile. Rer. J. 36(6); 565-71(1906)(Eng). The n rctron' hrh"" o is made possible by a process employiagg a mlxt. of solubilizingcotton ccllulose aud dihydrozyctlrylencurea (I) at 45. 15I'r'- "~' agent and Dowanol EP witHpigments,h vats~ HrO-sol... d'yes, Cr. and 85' was affected by the presence of 0.03,1Y 7nCk /'r( dyes„or insoL..disperse dyes;. followed by fxation by swelling, MgCir, or Mk(N0a)i as eatalysts.in tlre onlcr 7n(NOrh with nosucceedingfrzation of anytype: Since the natffsed.dye Clz > Mg(1KOa). = MgC1,, as.dctds byohe cllangu.r" `, 'on(, °t f hasrm affinity for the acetatefiber,e anysoilingof'the whites cam and crease recovery of the finished fabrucs. Thu dtllurn°" 1O elfcetivcnc tcmp. 'f; dimetiylo mnre pos. fnncd'. aith scco f"tivenes: t11e temp• nuudlabo lCinet cr ton ceDul( wea react ]. Dcmi; \c.e Orle cf,. prccec wcre appl cvllulose a cal: condit thoscoft kcaL/muL elbyleneu 6ni lted. f: acledl pret tlie mi primary C Fiaishir san, and Orleans„ 19fr1)(Eny mt-, mild atain, au2 tsp. by s clbselyre aistance r vestigntio and the it Chloros cotton, I Drake, J: fnd. E>rg Two new and bis(1 prepd'. h} (cH,Ci)ht prepd. b7 with SOC applied ta as a cata treated w hydroxidl that the c the preset of:the pn ently, thc the phosl eellulose - ment. ia bloistureuntreated whea con Crease amidoare Fiebig:(T 47(8), 91 amidome showed p strength the treat secondar areactio excess of proveme t'hiol6 dir'. samewha dilhiolsc the impr wasincn resistanc crease.de Dilations cl•letion llle bene'. pensated Use of (Pakistai Co[lant 1 tticd to yarn of '. from inc
Page 196: fiw68c00
3,4111,515 7 8 be used,, if combined with a water-miscibSe solvent,, such to about. 5 hours,, the tobacco pectins are liberated, rc- as aeetone.. leased and dcposited' im the tobaccoo plant parts to . form a The tobaccoo pectins cann be recovered$y concentrating binder composition., The resrdtingmixture maythen be the.solut'ionorsuspensioninwhich.theyarepresentuntil refined, for example, in adisk.rcfrner,.untillsubstantialiy they precipitato.. Tbisprecipitate might alsoo be charac+ 5 all the pulp (in excess of the waterr present), eann be terized as an intractable mass; sincee the pectin solution,., shaken throughh ascreena off approximately 18 meshh to upon coneentration, generally. becomes progressivelymore prodiicee a binder composition which isreadyfor usein viscous until itt finally drics to, leave a deposikiit a glassy ahe manufacture of reconstituted tobacco sheets. solid state:.. The term "tobacco pectins'1 ass usedd throughout this While the tobacco~ pectins can be separated and puri- lil, specificatioa means'9iberated tobacco pectins" and com- fledl before use as a binder in reeonstitutedtotiacco.shcets; prehund4 pectins which have been freed or liberated'~ front they'arepreferablyy employed! juskas they are.produced tobacco and are, therefore, not bound into the tobaeuo in situ, i.e.,.incombinationwith the treated lobaccoplant structure,, as differentiated from thee insoluble, naturally- parts.fromowhich they were obtained„the entire combina-occurring protopectins which are fomnd intoo a plant cell tiom.comprisingthe.binderforreconstitutedtobaccosheets1;j *tructure. The terminefudesthe free pectinic or pectic or, under sontecircunrstances„•the entire combination acid,, as well as~s soluble. saltss such as the sodium, potas- compr8sing essentiallythey entiree components.of a recon-sfum,- ammonium, pectates and pcctinates, and insoluble stituted tobacco sheet. By using theentire mixture, no salts such ass the calcium andl magnesium pectates and original tobacco flavors are.lost, alllof the:tobaccois.em- pectinatesdepending onn what methodd is employed to ployed, andd no expensive and time-consuming refining 400 liberate and obtain.them from the naturally occurring in- operatfonsare.requireds soluble protopactinsAlthough. itt iss nott necesary, the t}lixotropiec properties The.tobacco _peclins ~produced or liberated in srtu'or of solutions containing solublee peutins can bee adjusted isolated by meanss of tliisinvention can be. used as the in the preparation off a. cured sheet by theaddition of solee binder materiall for reconstituted tobacco, lle., no suchh mat•_rialss as ealciumm chloride. If any complex or '.5' othecntatcrials.need.be added'ro make the sheet. They can precipitat.eformed inn the firstt stepof this process is be sprayed, extruded on cast,.thus,facilitalingapplieation present with the soluble pectates, the thixotropic proper- onto a movir.gbeltcarrying tobacco dust. Under proper ties oB'.the mixture can also be adjustedd by adjusttng the: eonditionss of formulation and processing, reconstituted pH to~ precipitate calcium and magnesium pectates. tobacco made withi the tobacco pectins produced by this A preferred preliminary step, in accordancewithe the. 30' ihvention exhibit exeellenrphysical and'd aromatic.proper- present invention, comprises washing the tobacco~ plant ties:. The. ultimate tensile and wet strengths of the re- parts;.which are preferably ground or cut ta a relatively constituted tobacco are good. Whi1C no other materials small size, with cold svater. This water wash serves too need be added tb the.pectonaceous.binden; other materials remove impnrifios which might otherwise Bihderther cambe added, if'f desired. For example, organicc acids andl subsequent, treatmentss inn accordancee with thee present in-35 preservatives whichh may im themselves bee of tobaccoo vention. It is particularly desirablee to employ such a. origjn, may be added. Plasticizers;, such: as clycols and cold waten washing step when alkali metall carbonatespolyglycolk, andihumectants,..such an glycerin; may also, are employed as the reagent inthei first': step. Generally,, be added,, if desired., In iaddition, the gell strength of the suFTcient water.should be used.during.sucha.watcr.wash tobacco pectinscan.be regulated by parthll precipitation operation to,covar alll off the tobacco plantt parts present 90' to control suchh rheologicalproperties as viscosity, fluidity The temperature of'the water may be beticeen.-1° C. andlelasticity.Otherarldjtivesordispersantsmaybeadded and 100' C.,, but.is preferably about20° C.,,and the water in small amounts to regulate slurrying quaiities, provided, wash shmdd generally continuee for a period off from however,, thatt suclih substances aree non addbd ihn large about th to 2~,S . hours.. Agitation during the wash is enough quantities to adverselyaffecty the flavor or aroma desirable,, but not necessary. Afterr the waterwastt has 45 of thefinapproduct: Furthermore, the tobacco.pectins can been completcd~ thewatere can bee removed from the be combined with water-solublec gums or water-dispersiblee tobacco parts by filtration, decantation or other suitable' gomsconrmonly used'asbinders f'on tobacco sheets such.h means., as methyl cellulbse,, sodium carboxymethyl cellulose, guar As discussedd abovee aparticnlarly'preferreda embodi. 8uml l.ocustbeangum,.or alginates,althoughitispreferred mentt of the. Presentt invention involves~ thee use off an 50 10 minimize or eliminate.suchaddilions in ordbr to obtainn ammonium. or alkali metal orthophosphate, such ass di- aa productt which most closely resembles natural tobacco. ammonium monohydrogen orthophosphate (IDAP)„ for. The produce fromm trealingthe tobacco plant parts in therelcaseafthetobaccopectins.TheDAP'will;.generally; accordance with the methods of the present invention be added too the tobacco plant parts;, whichh may, for ex- may be cast dibectly' and'd driedd and cut into~ particulater ample, be brigFit: tobacco parts, burtey tobacco parts;. 53 material similar in physical form to ordinary smokingor a~mixture of the sante;, in an aqueous solution, The tobacco and sonsed,o preferablymixed with tobaccoleaf' concentration of.the.DAP in the aqueous solution is, nott cut or shredded in the usual manner. The productmay critical', but tvill„ gencrally, be in' thee range of0.5'-5.09a be cast ih sheett form, inn blachs or :is thrcad.s or other - by weightl The IIAPand'.watarmay be addcdiseparately shapes, as desired. An impor.tant use, hoxcvur, of tl1ee too thee tobacco. Thee amount't of ID.4P' should„ preferably;. 00 prepared composite slurry or easilymoided isolated pec- comprise fromabout 0.01 . to about 0.5part,5 and,. mostt lihaccouss mass is ass a a binderfor ground tobaccoo andpreferably; fromi about.0.05to-0.35 patt. (by weight.):) per for the making of corresponding taFaccoo products suit-C ' part oftobaccof beingg coniacted.. AA huntectant, suchh as able for smo}.inc: Sheet muterinllofwidJy diRerent:.prop- C glycerin orr tricthylcne glycol, may bcpresent{ if desiicd, erltes.may.be formed by suttablevariiuions in the manner 'J at about 0.5 to. I part per part. of DAP. The temperaturr OS of forming, One metflodand'prnduct comprisos flotving. N '. during the DAP'treatmentP of the toSacco.ntay varybe-the composite slhrry onlma ntovingbelt and npplying a. -1 '. tweem room temperature and abuut, 190' F. or higher, layerr of dry ground'd or fragmented tobaccoto tbe wet M depending on tbe lype of tobacco beingtreated. Underr adhesive surface. If desired, there may be first applied Cl1' pressure, even higher tcnipcratures. may be: employed.. to lhee belt' a l'nyer of the tobacco, followed by a.layen ~The pH of the: mixture is,., prefei'ably, maintained at a 70 of the binder, and then a. top laycrof the.lobauco. Vari- value about' 7.11 to 9.0, whichh may conveniently be ae+ ous additives may be included with. ihe ground tobacco complished by the adiiition: to the solutionof concentrated such, as fitwerants, plasticizers andl aromali:.. subsl:mces,, aqueous ammonia llyagttating or stirring.suclt.a.mixture The web isulunrdely dricd and ahen suitably moistcned undcrthe.aSote.ikscribcd'eondilionsfor.frontabout II andrulled',.up.SnchmcthodsofTormingrontinnuussheets nrinute.to abotn1 day, mrd,prefercably,, fromabout L hour. 75 arc knoan.gcneredly'in lhceart:avd the details need not b'e.
Page 197: fiw68c00
3;4'11,515 3' 4 and to obtain themi as homogeneous compositiuns: The cooscu,ooo otn1 recovery of pectins from tobaccoo is even moredifficult. (!;-o. than the recovery of.peetins,from.other plants. I ~ Ih:accordance with the.present invention, tobaccopartsI7s 1 ~1t 1r1, are bonded together'by tobacco peetinswhiehiare speci- 5: -o-e-rr a-o-o=-c-a a-c-o-+ z-ca- allyprepared by a.novel,process which yields these pee- 1x y[/ -111 / producrhnvtne tins in a form in which tfieycany be employed as binder I bwror c7umt mn- ' materials:0urprocessfbrpreparingtobacco:pect[nscom= aentratlnn than -C C-o nwrnlewn,poo-Prises first'reacting tobacco parts, preferably in a form ih b ~'rr ~ooCtL teteln tuetraat- . .. . x wtiich they presenta large surfacearea,.with~an aqueous10. reetaueActdor.saublorectate Ins zoluttan. solution ofi a~ non-toxic reagent' which is capable off react- In..one.embodiment of this invention,, the reagent6 . which -ing.with,and destroying¢he calcium and magnesiumrross- cann be, and~ preferably is, in aqueous solution;acts, by links in the pectinaceous~ substancess which naturally oc. forming a precipitate with thee calcium or magnesium, in eurin tobacco. After the calciumand~m magnesiumcross- which case, it can be a water-solublee monuvalent metal fin&sare destroyed,.the tobacco pectins are liberated and 1bsalt of the formula M„X.wherein=M is.a monovalentin- made available forr use asabinder. The tobaccopectinso organic eation,, n iss an integerr having a.valile of'1, 2,. or are.thendissolvediordispersed in solution, orare.at least 3 and X.is ananion which may be monoval'entor poly- sufficicntly released from the interstices of the tobacco valent, such that thecalcium.salt of the formula CayXo is mass sothat Ohey form, a coatingan the: surface thereof.. essentially insoluble im the treating solution and; pand q Tobacco pectihs which,are dissolved or dispersed in the. 20are integerss correspondingg to the functionality of' X. treating.solutions, are thereafter precipitatedlor deposited'Monovalent cations which are effective include thee alkali from the solution,, solhat they becomeavailahle for usee metals such as sodium, potassium.and.lithium, and also as a binder materiall Ih this way, the tobacco: parts can include such monuvalent.cations as ammoniirm, and sub- be bondhd together by a.binder material', which is madee stituted ammonium.ions (,NR.)+.where R=aryl.oralkyll of ingredients that are closel)'related tothe naturally oc-25 Thee anion portion of thee molecule may be COs=,. PO~ , eurring ingredients of tobacco. Thee bondingg can be ac-HRO: , HaPOs , and the like. For example, the compound complished without the~, naedd fbr the purification of the MnX could bee sodiumi carbonate;, NaiCOs,1 since sodium tobacco pectins„ inasmuch as any materials which are is a monovalent inorganic.cation and calcium,carbonate:is present are clbsely related to the: materialswhich are essentially water insoluble. Additionall representative ex- normally present in tobaccoo and, tbus; do not add any 30I amples ofprecipitating~ agents arethee orthophosphates, undesired.qualities.to the tobacco. metaphosphates and carbonates of sodium, potassium, The tobacco parts.whicli can be employed in the present litliium and ammonium. In the case of thee or¢hophos- inventionn including tobacco leaves„stems:and, stalks;.or a phates, the anion portion•.n off the molecule may be: either mixture of these, whether in sheet, flake, particulate or p04=, HPOg , or HaPOa • Specifically, for exampl'e, when otherform. Preferably, the parts areground cut or other- 35ammonium orthophosphate is used, theprecipltate is eaf:n wiseprepared' in afo= which presentsa large surfacecium:and/orma¢nesium.ammoniumphosphate.ThepHof area..The. portions.of the plantt comprising the stems or this'reaction should be between about 5.8 and 10:and the midribs„ and often referred to ass tobacco petioltes, are: temperature may be as high as 400°'C. but should,., prefer- the preferredl starting materials. Tobaccostaiks contain ably, bebetween about. 25° C: and about 135° C:.for a lesser amounts of'pectihaceous materials but. can alko. 40'' period ofI from. about 1; , minute to about 24hours- Pre- be employed. *ferred precipitatingg agents which may be employed are .. In4he fiist step of theproccss of.otrr invention, tobacco the alka1 metal carbonates, for example„ sodium, earbon- pectins are liberated from pectinaceousmaterial5in to- . ateandpotassiumcarbonate..Particularlypraferred'precip- bacco byreacting the pectinaceousmaterials with.a.rea- itating agents which maybe employed are the alkali metal gentwhich, under the conditions off thereaction,e is re-45, phosphates and', most particularly;, the alkali.metaliortho- active:with.thecalciu~m (and/ormagnesium) contained:im phosphatesandtheantmoniumorthphosphates„sueltasthe them tof,orma compound or product having a lowerammonium phosphatesand ammoniumorthophosphate, calcium ion, and, in thee caseof magnesiumii magnesinm. sodium orthophosphate;, potassiumorthophosphate, uw ion, concentraWona in the treating,solution than the na- dium dihydrog.en orthophosphate„ammoniumdihydrogen lurallly occurring caleium~. (or magnesium) pectate:. This. 50 orthophosphate; potassium: dihydrugen orlhophosphate,.die reagant may, for convenience„8e hereinaflerreferred to ammonium monohydro.en ortti.ophosphate,, disodium as a"cross-linkdesttoying. reagenL^monohydtogen orthophosphate: and diponssiurn monohy- The reaetion maybe generally represented.byEquation drogen orlhophosphate.. I, whichillhstrates the reaction of, one type of tobacco In.a secondiembodiment the:cross-link.destroying rea- protopectin (a calcium saltt off apolymerof galacturonic 55genb acts's byy sequestering the calcium or magnesitlm, acid'.):,, whereihn calciitm cross-linkss aree presenit with the thereby removing the calcium or magnesium atoms by reagent of the.presente invention. 7n.the equation, R.may forming a complex therewitlL. Suitable reagenlsof this be hydrogen, in which case the product iss pectina acid,. type include any sequestering agcnt whichwill form a or R may be a monovaleno inorganic cation, such as complexor ctielatee with the calciitm and/or magnesium, sodium, potassiumm or ammonium, in which case the 00, thereby removing the caiciunr: and/ormagnesihm and product is a solublee pectate,. making them unavailable for recross-linking wih tile pec- coocaJ Cir,coo 071 li-~. _ _ metal polymetaphosphatessuch asletra-mctaphosphates, 0 C1 05 hcxametaphosphatess andtrimctnphosphates;d pyrophos ~i /R. 1 /H. lli` phates andd tripolyphosphatcs, such as sodium hcxamcta ~ -o-c-x u-C--o--C lt: rr-c-o-+ zaR phosphate;, tetrasoJlum pyruphosphatc and pcntasodiunt (,f1 1rt --./' 1rC / Treauusro~tnpolypltosphale. Tile mee.h.mismwhich.occurs when a fjl+;~'/ eeentnrthls. sequestering agent is employed isthe fornmtion of a~_ ' Ihvuntlon I I o7o chelate; calctum and magnesium ions arc:no longer avail- b9t On Cooon, ablee to combire with the pcctatc ions iiu soluliun: Many eelclum Pectato naturally occurring amines and'peptidtsnre ilso elfhctive as sequcsleringg agents for caluium: and/or nmgncsium, •Ryrm,erntrntlnn.rec mrnn rnnorntrnYlnn nr nel/k'llp~,nx xrt. Reph.sonlinlvet e%amplCS incllWe ahllllnl`, :Ispartle: acl.lf lortlt tn l,`li,xaunr, "°Lrxtbonk ar. I'IiY++lcnl Chemlvlry;" 2nJ , 1 CIrtC, C l I ~ ~ edlnuu; pngc u5a:, 1), V.,NO~tennd Cumpnny, Suc. 76 8 y S13 Y 6 YeInc, glalantic actd, scrinc, tyrosiue and, crossnnc . tin...Idlustrative of such sequestering agents are ethylene- Q . diaminetctraacelic acid and simil:u, amino acids,, alkali Q: F
Page 198: fiw68c00
,t 3,411„515 ~ 10 TA'nLID~. I'I asrople 3 aheet 2 Con- [rol .v Part Cb1Cl-._-_-..._.. ................. 1/1a'. 1/10' 1/2alin2;5 6loislurm(percent) r--.--._----------- 125 1L1 12.71L< Tesilc,kelin!.------ .------------- .. .80 •Iq' .6G1.3 FolBed 1'hnsilA, k8./in................. 71 .78 G1.. .74 ? EWnentimt(nereenUr--------- ...... 2.2 ^.3 2n' I.V Isurnin8'Itatanmg./acc.r-.._-....__-.. 1.8 1.8I 1.0 1.7 further described. Representative ofthisprocedure.is thee dard reconstituted tobacco sheet,, were submiuedd to~ a apparatuss and..mcthod disclosed in. U.S..B'atent.2,734,513. smoking.panel'for subjcctiveiesting, The panel found that Another methodi of formingg a reconstituted tobacco the smokeof:tfie cigarettes made by the method of this product, withh the slurry' of the isolated tobacco pectins's invention. was.s significantly less harsh than the smoke ob- asabinder,.comprisesmizingground:tobacco:thoroughGg 55 tained from the control cigarettes. A pleasing vanillin therewith into a man of dough-likee consistency and thenn odorr was foundto: be transmitted'd intoo the aerosol phase casting thee masss in.sheet formu or,toa.moviitga belt sur- of the smokee from the testt cigarettes made'e employing face'followed by drying and remoistening'in accordance reconstituted tobacco made bythe.present invention. withh the knowm procedures. Representative of this pro- ,. Example 2eedune is.the apparatus and:method.disclosed in. U.S!.Pat- 1n Fifty gramss by weight' of burley' tobaecoo stems were ents2;708;.175..and 2,769,734. Obviousiy;.the reconstituted thoroughly' washed'' in aoout 5 liters of cold water for tobacco may also be formed by molding or other suitable three hours. The washcd' tobacco stemss wem: then mixed means.. with 500 grams;of water haviug dissolved'thcrein 5 grams Aparticularl'ypreferredaspect ofthe'.present'.invention of sodiumm carbonate. The resultant mixture,., conlaining comprises, employing, as',a binder or directly, the mixture •15 about. 8% solids, was steamed under atmospheric pres- of tobacco.and'tobacco pectins..whieh have'beeniproduced sure for 30:minutesandlundcr a ressure.of 20' . p ps..i:g. for iit situ, wiihoutt any separation steps and without Ihe: an additional 20:minutes, At the end of this time, thee miit- necessity for any additional.adhesive.materialsl turewase allowed tocooll and'd theliquid' was separated The following exmaples:are.illus[t•aIiveifromp the solid'materials:. The solid materials were treated Example: 1 200 in aa cider press to recover as. much as possible'e of the Tobaceostems (1'0''parts)'werecovered:with,cold:water remaining liquid. The liquidlwas addedlto a previously and leached.d for Ih2 hour:. Thewater was then decanted prepared coagulantt bath which consistedi of ethanol and and discarded:. A treating solution;, made from PV partt hydrochloric acid, in an amount toadjust the pH of th'e: of sodium~earbonate dissolced.ih 60opartsof water, was eoagulantt to about 1.0. The resulting mixture (which added.to the.leached parts: This.miature',was heated. at its 2" had a pHH of about 3.0)) was.s alternatelyy stirred and af- boiling point for 30 minutes at. atmospheric pressure and lowed to.o seltlefora.period of'twof hours. Att thee end off then for 20 minutes at 20p.s:i:.g. In the course of'f this this time the mixturewase strained through a cloth sieve'e treatment;, the tobacco pectins were dissolved from, thee andl the filtrate'e was discarded leaving a solid, gel-like'e tobacco parts. The entirewete mass (pulp mixture) wasmass>eonsistingessentially.of Pectinaceous.materialscom-dried and ground: in aWaring. Blendor so'thaC it would 30 bined wi[h' approximately Mpartsof liquor., Thee yield passthrough a 50 meslvscreen: The resultanft materiali of pectinaceous. material's was'. 15%e,, based upon the diybad gel-like properties and was thixottopiein nature:, weight' of' the starting tobacco plant parls:, The mass To.this.matcroal was.added 2parts.of glycerin,.to serve•e was'.observed too be tbixotropic, soluble in'.water at a pH as a humectant. The.pH of the.resultEngmixture was.s ad'., of about 6 and soluble iha sodium carbonato-.sclutioae justed to 6 by the addition of a solution of 10% hydro:-3' Thee tobaccopeetins thus isolated were quite impure ehloricc acid. Onee gram of sodium carboxymethyl cellu-and had a: color characteristic'.of tobacco:.The'solidmass lose (CMC) was..add'ed to'the mixture, giving a propor-was'tBen'redissolvedlin a: sodium carbonate solution', and! tion of about I part of CMC to 10'0 parts of total! .. solids the resultant solution: was:poured into an. acidified ethanol in, the mik[lu'e. Since it was desired to use this mixture 40 bath similar to, . the coagulant bath uscd.earlier. The re- as. a sprayedd tobacco binder, the CMC was employed in - coagulated'd solid was obtainedl by filtration and dried in order. to adjusrt the: spraying qualities. The mixture' ofan oven at 105° C. The dried tobaccopectins were ih. (a) treated tobaccoo plant parts,, includingg the liberated: the form'of an opaque, substantiatlyy colordesss sheet:.. tobaccopectins„ (b).) the sodium carboxyrnethy)! . cellulose When thee sheet was'pulverized'., a white.powder was ob- and (c): the glycerin badd a, viscosity which was suitable tained' having a. d[stinctt and pleasing odorr similar too for spray applicatiom of the mixture as abihding ma- 45 vanillin. terial:for reconstituted.tobacco, This material was sprayed Ten grams of:the: dried tobacco pectins prepared; abovee on top of an undcrcoating'g of tobacco dust;, of an.. 80~0 weree swelled in 100 ml. of' cold water. The mixture was.s mesh.size,.whicfl had'.been dusted on a wet belti, Another thenn added to a slurry consisting of 8.5 grams of refined coat of the.tobacco dust was:Iaid on'top of the binder.In. kraft pulp: dispersed in 200 ntll. of' water.. The resultant general an apparatus similar to that describedl in' U.S:, 00 mixture was homogenized inn a Waring, Blendor. Four Patent 2,734,5133 wasemployed., Ass in said patent, thegrams.of glycerin were then added tothe'mixture toserveo aeuonstituted sheet was dried and was then humidifiedd as a hnmcctant:. The resultingmixturc was cast into a to the desiied moisture content. The controll in Table binder film„ using a. Gardiner casting knife set to: pro+ Twas.made:ina.conventionalmanner,usinga..relativelyI ducea.sheeD.having a'wetthickness,oF50milssThephysi, Iarge.an3onnt.of CMCin proportibn to.thepulped washed: 55 cal properties of:this. sheet, after dnyinc:.were tested':md tobacco stems. The test data as's observedi . aterecorded were found comparable to 1hee propertiess of conventional in Table.1:. tuinder' films. The physical l,:st data' are uiveni im Table II: The.control material =s made by misia, pulp„which &ad becn refined with NaOffi,, with sodiumm carboxy- material cellulose (CIi7C)'and a humecthnt, ass is shown' iaTable 16. ~ TA13LE.Ir 00 Test~.nlnderrppns, 6~ ~ Coufrnl ~ mndrr-}ylm N llardeeAf9lurinl.___.__.... IAted tnhnceoyeellus', C)tC}11u1p1Q estructrdTrotn toLUCro ~n Iretlolcs', yr t 11as1 1lelylrt.mns/ft:n------ 8......................... ,. . 281. Vlu tin.lo,n•ol . 14 3 . .11.0. ~ .. 1 dliWnt . .......... O58 ...................... . .e.ln. IrYr t'CU il F1 Cztlrv I r -./1_. 1;1. p r -. - SSlnkt.nml .iMtl,gmutcmf 3 S' __-.. . ...BLD! sn. ft,.r' r Psrt'llA1C. per parts ofdotW tnhuccn sulids Ie [hee slurry. (Inulurtlne toLacca."rctwp4 t TLU1'en•cu6teo of mnlstura ennlalned Ih thn rntlra sLect'(w 4.lnuls). r'ptralrenklrrrstrenythof'e90crmteststrip:whiclidmll clwidh;nn •o ,rsKa ahly.AtestAlrlV crmsed by appllQJtlon of a 19p$rmn.weiqLtYor /,0 30sea•Innds pro r 'rnrt- ' MarrRallon•,st lneakncel mr tlm rnstrnn Test.xlimhlna. r Freettlmnrllasl r•rrrnin8,rai,• ufmstuFloimt strip•.lanlr. The reconstituled tobacca.shccts made pursuant Ieihis example: were' shreddedandl madeinto cigarclles.. The test cignrettes, as.wcll as control cigaretles,made from stand- 7:5 r C'\IF (radimu suLOq•rw•thl~Urr•Ilallei9 nud pull>• nt prepurud Ly' lam.vu nrrt]mds.mnl cmu:,lnin¢:iVmu 3Y'r C'11C• r 1t'rvk.rn,•llhaeut u.pioyurtlnuaJ [u 1LC prml'uct uf tlio d~nallu x[rruclOL nnd...tlir.rli,u2uliou.
Page 199: fiw68c00
I5 3,4!11,615 Example 21 Brightt tobacco stems weree washed inn coldl water whereby;, from, about 75to 80% off thenaturale content of water-soluble substances wereremoved to the wash water. The stems were them dried and ground~ and used! '' to make a binder as follows: One hundred parts of water were brought tom lem-perature of 10D° C., andl toAhis were added: 7.00 partsby weighr, (dry basis) of the washed bright (flue cured)' stems, 1.055 parts diammonium phosphate, andl 0.70 part 10. of gtycerin,, as a humectant. Concentratedd aqueousammonias was thenn added tobring.theo pH.of the mixture to.o a value oft at least 8.0 but. 16 peraturee of 1'00° C., and! tothis weree added: 7,00 parts by weight (dry basis) of.thc.washed bright(Oue.cured'.) stems, 1.05 parts dianmionium phosphate, and 0'.70 part of triethylene glycol (TEG), as a humectant. Concentrated aqueousammonia was then added to bring thepHiof lbe mixture toavalue of.at least 8.0 but no higher than. 8.5. The mixturewas.thenstiired for four hours and sub- sequently refined in a disk type refiner until. better than 99% of the pulp (in excesswater)' could be shaken through.an 18 mesh sieve. The resulting materiali was then employed as a binder for tobacco plant partsto form a reconstitutedl tobacco no higher than 8.5i sheetinamannersimilartothatdescribcdimExamplel6. The mixture wasthens stirred• forr fourr hours and: . sub:-10" Example 25seqtrently5 refined in a disk type refinerr untili betterr than. 99% of'f the pulp (in excess water) eouldbe shahen. In.the aci& wash, treatmenf.of tobaceo.parls.for.remov- throngh.an. 18mesh, sieve,, at of alkalineearth earth,minethe tobaccoo pectin, itt is The resulting.material'g was themn employed' as a.binder necessary to use qpitee large volumes of water if i0t is for tobacco plbnt parts to form a reconstituted tobacco°-0desirsd torednce the solubl'e anioncor.tent of the prod- sheet'in amannec similar to thatt describedd in Example ucU to a very low level... In this case, thee use of a cation 16.. exchange resin in a.closed loop system. with the tobacco parts: can make it' possihle to conduct.thet process with Example. 22limited amounts off water andi acid: Btight: tobacco stems were washed.in cold water where- '-5 The usee of.a..resin (such as Dowex 50. W) in this way by, ftomm about.75to 80%' of the natural content ofdoes..notat all alter the principles of this form of.treat- water-solublef substances were removed im, the washh ment since the resin merely serves as a convenient reser- water. The stems were then used diiectly in the wet con. voir of acidity,, continuouslyy reconditioning.eftiuent from dition to make a tiihder as follows:thestems: for reusee in. the extraction. One hundred parts oE'watcr were broughtt too a tem. 30: Ih the following.example, the use of a cation exchange perature ef', . 100° C., and to this were added• 7.00 parts resin permits the treatment of stems with a small fiac- by weight. (diybasis) of thewashede bright.(flue eured)) tion of tlieirnatural nitrate: ion content. Hydrochloric stems, 1.05 parts diammonium phosphate, and 0:70part acidlis used atintcrvals.to regenerate the resin, but.never of glycerin, as a humectant. directly contacts the.tobacco.. Concentrated aqqeouss ammonia was. then added to. 3aThe apparatus used for ion-exchange extraceionn of bring the pH of thee miztureto avalueof' at least 8.0 calkiurruftom tobacco stems consisted of a 20 inchdiam- but.no higher than 8.51. - eterr washing column fitted with a 20 mesh screen to sup- The mizturewasthen stirred for four hours and sub, port the charge of' stemsands a 6 inch diameter Pyrex sequently refined in.a disk type refiner until better than 40~ column filledi with 13 pound5of Dowex 50W-8acid:- 99%of the pulp (in excess water) could, be shaken. form foni exchangee resin beads. The valvess and piping through an18: mesh~ sieve. 'permitted a puntpp to be used either for. recyclingg waters The resulting mamrial'was then employedas a, binderr fromm the stem~.chargc through the column. or for separate- for.tobacco plantpartsto.form a.reconstituted tooaccoo ly regenerating,the resirt with hydrochloric acid solution. sheet in amannor similar.to thakdescribediin.Example 161 In operation,. fifty paundsof stems were placed'in the . qg, washing column and rinsed with cold water until they Ezample23wereneady free of water-solublee material.. THen, the effluent waters were diverted throaghh the ion exchange Bright tobacco stems werewashed in cold'd water bed, returning,lry gravity to t11ee top~of stcm charge..When whereby,., fromm about.74 to 80% of the natural content yhe aqueous extractt from one poundof burleystems of water-solublee substances were removed in the wash J0 was added too the recycling waters,, a pHH of between 1.5 water. The stems were then dried: andd ground and us^_d' and 2.0'was0 soon attained. During the treatment, the to make.abinder as.follows:waters flowing from, thee resin column: were monitored One hundred parts.of water were brought to a tem- forr their ealciumcontent. (An appreciable precipitate peratureof. 100° C.,, and to this were added: 7.00 partss from 50 ml. of resin e07uen0 tre:dc& with: ammoninm by weight.(drybasis). of thee washed bright (/1uee cured) aj oxolate and made basicwith.ammonia indicated that the stems, 1.055 pans diruumonium~ phosphate, and 0.70 part. resinn was saturalcdi withh caiciumand needed to be re- of triethylenec glycol (TEG),, as a humectant. gencratedl witfrh hydiochlorio acid.). After sixteen hours Concentrated! aqueous ammonia wass them added too of operation, and one regcner:dion of! the ion exchanee bringg the pH, of the mixturee to a, value of! at't least 8'A0 resin, thee treatmentt was considered complete. AA subse- bu0 no higher than 8.5. 60 quent analysis showed that the calciumm content. of the The mixture was chenn stirred for four hourss and sub- stems had been rcdhcedd toIcsstham one-sixtht of the sequentlgrefined in a diskk type refineruntilr better thann starting value of 4.5% CBO. The stems.were rinsed twice 99% off the pulp (in excess. water) could be shaken. with cold'd distilledwater;d pressed lightly, and redtiedin through an.18'.meshsieve. a tobaccoproccssingo oven to.o a final moisture conlentt of The resulting~ material.was.thcn.employedas a binder 65: about 4%, . and groundlto pass a.40 mesh screcn:When for tobaccoo pl'ant parts to form aa reconstituted tobaccoa small sample oEf tdiispowder was stirred withh a. little sheet in amanncr siinilarto that described in Example 16.. coldammonia; it dispersed immediatcly,, forming a stiff Examplc.241 , paste. ~,,..-..a The resulting,matcrial' was then.emplbycd as nn binder Brilght.tobaeeo stems were washed tn cold water where-70. for tobacco l.d:mt parts to form a reconstituted tobacco by, from abutrt. 75to 80% of Gie: naturall content ofsheet in aa manner similar to Ihat described in ExamPle 116, water-soluble sulistances wereremoved ih the washh waten . The stemsaro re. then uscdd directlyin Ibe wet condition BxampIc 26 to make a binder as follows: Twentygratns of tobacco Gness werc wa.hed ihI liter Onc hundredl. parts off watcr tverre brouglit to a tcm- 73 of distilled wa6r.r taget:rid of: thetobaweo solubles. The r
Page 200: fiw68c00
---

Text Control

Highlight Text:

OCR Text Alignment:

Image Control

Image Rotation:

Image Size: